Direct product G=NxQ with N=C12 and Q=D6
Semidirect products G=N:Q with N=C12 and Q=D6
Non-split extensions G=N.Q with N=C12 and Q=D6
extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1D6 = D4.D9 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | 4- | C12.1D6 | 144,15 |
C12.2D6 = D4:D9 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | 4+ | C12.2D6 | 144,16 |
C12.3D6 = C9:Q16 | φ: D6/C3 → C22 ⊆ Aut C12 | 144 | 4- | C12.3D6 | 144,17 |
C12.4D6 = Q8:2D9 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | 4+ | C12.4D6 | 144,18 |
C12.5D6 = D4xD9 | φ: D6/C3 → C22 ⊆ Aut C12 | 36 | 4+ | C12.5D6 | 144,41 |
C12.6D6 = D4:2D9 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | 4- | C12.6D6 | 144,42 |
C12.7D6 = Q8xD9 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | 4- | C12.7D6 | 144,43 |
C12.8D6 = Q8:3D9 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | 4+ | C12.8D6 | 144,44 |
C12.9D6 = C32:2D8 | φ: D6/C3 → C22 ⊆ Aut C12 | 48 | 4 | C12.9D6 | 144,56 |
C12.10D6 = C3:D24 | φ: D6/C3 → C22 ⊆ Aut C12 | 24 | 4+ | C12.10D6 | 144,57 |
C12.11D6 = Dic6:S3 | φ: D6/C3 → C22 ⊆ Aut C12 | 48 | 4 | C12.11D6 | 144,58 |
C12.12D6 = D12.S3 | φ: D6/C3 → C22 ⊆ Aut C12 | 48 | 4- | C12.12D6 | 144,59 |
C12.13D6 = C32:5SD16 | φ: D6/C3 → C22 ⊆ Aut C12 | 24 | 4+ | C12.13D6 | 144,60 |
C12.14D6 = C32:2Q16 | φ: D6/C3 → C22 ⊆ Aut C12 | 48 | 4 | C12.14D6 | 144,61 |
C12.15D6 = C32:3Q16 | φ: D6/C3 → C22 ⊆ Aut C12 | 48 | 4- | C12.15D6 | 144,62 |
C12.16D6 = C32:7D8 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | | C12.16D6 | 144,96 |
C12.17D6 = C32:9SD16 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | | C12.17D6 | 144,97 |
C12.18D6 = C32:11SD16 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | | C12.18D6 | 144,98 |
C12.19D6 = C32:7Q16 | φ: D6/C3 → C22 ⊆ Aut C12 | 144 | | C12.19D6 | 144,99 |
C12.20D6 = S3xDic6 | φ: D6/C3 → C22 ⊆ Aut C12 | 48 | 4- | C12.20D6 | 144,137 |
C12.21D6 = D12:5S3 | φ: D6/C3 → C22 ⊆ Aut C12 | 48 | 4- | C12.21D6 | 144,138 |
C12.22D6 = D12:S3 | φ: D6/C3 → C22 ⊆ Aut C12 | 24 | 4 | C12.22D6 | 144,139 |
C12.23D6 = Dic3.D6 | φ: D6/C3 → C22 ⊆ Aut C12 | 24 | 4 | C12.23D6 | 144,140 |
C12.24D6 = C12.D6 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | | C12.24D6 | 144,173 |
C12.25D6 = Q8xC3:S3 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | | C12.25D6 | 144,174 |
C12.26D6 = C12.26D6 | φ: D6/C3 → C22 ⊆ Aut C12 | 72 | | C12.26D6 | 144,175 |
C12.27D6 = D6.6D6 | φ: D6/S3 → C2 ⊆ Aut C12 | 24 | 4+ | C12.27D6 | 144,142 |
C12.28D6 = S3xC3:C8 | φ: D6/S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.28D6 | 144,52 |
C12.29D6 = C12.29D6 | φ: D6/S3 → C2 ⊆ Aut C12 | 24 | 4 | C12.29D6 | 144,53 |
C12.30D6 = D6.Dic3 | φ: D6/S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.30D6 | 144,54 |
C12.31D6 = C12.31D6 | φ: D6/S3 → C2 ⊆ Aut C12 | 24 | 4 | C12.31D6 | 144,55 |
C12.32D6 = D6.D6 | φ: D6/S3 → C2 ⊆ Aut C12 | 24 | 4 | C12.32D6 | 144,141 |
C12.33D6 = C3xD4:S3 | φ: D6/S3 → C2 ⊆ Aut C12 | 24 | 4 | C12.33D6 | 144,80 |
C12.34D6 = C3xD4.S3 | φ: D6/S3 → C2 ⊆ Aut C12 | 24 | 4 | C12.34D6 | 144,81 |
C12.35D6 = C3xQ8:2S3 | φ: D6/S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.35D6 | 144,82 |
C12.36D6 = C3xC3:Q16 | φ: D6/S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.36D6 | 144,83 |
C12.37D6 = C3xD4:2S3 | φ: D6/S3 → C2 ⊆ Aut C12 | 24 | 4 | C12.37D6 | 144,163 |
C12.38D6 = C3xS3xQ8 | φ: D6/S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.38D6 | 144,164 |
C12.39D6 = C3xQ8:3S3 | φ: D6/S3 → C2 ⊆ Aut C12 | 48 | 4 | C12.39D6 | 144,165 |
C12.40D6 = Dic36 | φ: D6/C6 → C2 ⊆ Aut C12 | 144 | 2- | C12.40D6 | 144,4 |
C12.41D6 = C72:C2 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.41D6 | 144,7 |
C12.42D6 = D72 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | 2+ | C12.42D6 | 144,8 |
C12.43D6 = C2xDic18 | φ: D6/C6 → C2 ⊆ Aut C12 | 144 | | C12.43D6 | 144,37 |
C12.44D6 = C2xD36 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.44D6 | 144,39 |
C12.45D6 = D36:5C2 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.45D6 | 144,40 |
C12.46D6 = C24:2S3 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.46D6 | 144,87 |
C12.47D6 = C32:5D8 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.47D6 | 144,88 |
C12.48D6 = C32:5Q16 | φ: D6/C6 → C2 ⊆ Aut C12 | 144 | | C12.48D6 | 144,89 |
C12.49D6 = C2xC32:4Q8 | φ: D6/C6 → C2 ⊆ Aut C12 | 144 | | C12.49D6 | 144,168 |
C12.50D6 = C8xD9 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.50D6 | 144,5 |
C12.51D6 = C8:D9 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.51D6 | 144,6 |
C12.52D6 = C2xC9:C8 | φ: D6/C6 → C2 ⊆ Aut C12 | 144 | | C12.52D6 | 144,9 |
C12.53D6 = C4.Dic9 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.53D6 | 144,10 |
C12.54D6 = C2xC4xD9 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.54D6 | 144,38 |
C12.55D6 = C8xC3:S3 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.55D6 | 144,85 |
C12.56D6 = C24:S3 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.56D6 | 144,86 |
C12.57D6 = C2xC32:4C8 | φ: D6/C6 → C2 ⊆ Aut C12 | 144 | | C12.57D6 | 144,90 |
C12.58D6 = C12.58D6 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.58D6 | 144,91 |
C12.59D6 = C12.59D6 | φ: D6/C6 → C2 ⊆ Aut C12 | 72 | | C12.59D6 | 144,171 |
C12.60D6 = C3xC24:C2 | φ: D6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.60D6 | 144,71 |
C12.61D6 = C3xD24 | φ: D6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.61D6 | 144,72 |
C12.62D6 = C3xDic12 | φ: D6/C6 → C2 ⊆ Aut C12 | 48 | 2 | C12.62D6 | 144,73 |
C12.63D6 = C6xDic6 | φ: D6/C6 → C2 ⊆ Aut C12 | 48 | | C12.63D6 | 144,158 |
C12.64D6 = S3xC24 | central extension (φ=1) | 48 | 2 | C12.64D6 | 144,69 |
C12.65D6 = C3xC8:S3 | central extension (φ=1) | 48 | 2 | C12.65D6 | 144,70 |
C12.66D6 = C6xC3:C8 | central extension (φ=1) | 48 | | C12.66D6 | 144,74 |
C12.67D6 = C3xC4.Dic3 | central extension (φ=1) | 24 | 2 | C12.67D6 | 144,75 |
C12.68D6 = C3xC4oD12 | central extension (φ=1) | 24 | 2 | C12.68D6 | 144,161 |
x
:
Z
F
o
wr
Q
<