Extensions 1→N→G→Q→1 with N=C6 and Q=D12

Direct product G=N×Q with N=C6 and Q=D12
dρLabelID
C6×D1248C6xD12144,160

Semidirect products G=N:Q with N=C6 and Q=D12
extensionφ:Q→Aut NdρLabelID
C61D12 = C2×C12⋊S3φ: D12/C12C2 ⊆ Aut C672C6:1D12144,170
C62D12 = C2×C3⋊D12φ: D12/D6C2 ⊆ Aut C624C6:2D12144,151

Non-split extensions G=N.Q with N=C6 and Q=D12
extensionφ:Q→Aut NdρLabelID
C6.1D12 = Dic36φ: D12/C12C2 ⊆ Aut C61442-C6.1D12144,4
C6.2D12 = C72⋊C2φ: D12/C12C2 ⊆ Aut C6722C6.2D12144,7
C6.3D12 = D72φ: D12/C12C2 ⊆ Aut C6722+C6.3D12144,8
C6.4D12 = C4⋊Dic9φ: D12/C12C2 ⊆ Aut C6144C6.4D12144,13
C6.5D12 = D18⋊C4φ: D12/C12C2 ⊆ Aut C672C6.5D12144,14
C6.6D12 = C2×D36φ: D12/C12C2 ⊆ Aut C672C6.6D12144,39
C6.7D12 = C242S3φ: D12/C12C2 ⊆ Aut C672C6.7D12144,87
C6.8D12 = C325D8φ: D12/C12C2 ⊆ Aut C672C6.8D12144,88
C6.9D12 = C325Q16φ: D12/C12C2 ⊆ Aut C6144C6.9D12144,89
C6.10D12 = C12⋊Dic3φ: D12/C12C2 ⊆ Aut C6144C6.10D12144,94
C6.11D12 = C6.11D12φ: D12/C12C2 ⊆ Aut C672C6.11D12144,95
C6.12D12 = C3⋊D24φ: D12/D6C2 ⊆ Aut C6244+C6.12D12144,57
C6.13D12 = D12.S3φ: D12/D6C2 ⊆ Aut C6484-C6.13D12144,59
C6.14D12 = C325SD16φ: D12/D6C2 ⊆ Aut C6244+C6.14D12144,60
C6.15D12 = C323Q16φ: D12/D6C2 ⊆ Aut C6484-C6.15D12144,62
C6.16D12 = D6⋊Dic3φ: D12/D6C2 ⊆ Aut C648C6.16D12144,64
C6.17D12 = C6.D12φ: D12/D6C2 ⊆ Aut C624C6.17D12144,65
C6.18D12 = Dic3⋊Dic3φ: D12/D6C2 ⊆ Aut C648C6.18D12144,66
C6.19D12 = C3×C24⋊C2central extension (φ=1)482C6.19D12144,71
C6.20D12 = C3×D24central extension (φ=1)482C6.20D12144,72
C6.21D12 = C3×Dic12central extension (φ=1)482C6.21D12144,73
C6.22D12 = C3×C4⋊Dic3central extension (φ=1)48C6.22D12144,78
C6.23D12 = C3×D6⋊C4central extension (φ=1)48C6.23D12144,79

׿
×
𝔽