metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D72, C9⋊1D8, C8⋊1D9, C3.D24, C72⋊1C2, D36⋊1C2, C24.2S3, C18.3D4, C2.5D36, C6.3D12, C4.10D18, C12.42D6, C36.10C22, sometimes denoted D144 or Dih72 or Dih144, SmallGroup(144,8)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D72
G = < a,b | a72=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 72)(2 71)(3 70)(4 69)(5 68)(6 67)(7 66)(8 65)(9 64)(10 63)(11 62)(12 61)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 52)(22 51)(23 50)(24 49)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 42)(32 41)(33 40)(34 39)(35 38)(36 37)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,72)(2,71)(3,70)(4,69)(5,68)(6,67)(7,66)(8,65)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,72)(2,71)(3,70)(4,69)(5,68)(6,67)(7,66)(8,65)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,72),(2,71),(3,70),(4,69),(5,68),(6,67),(7,66),(8,65),(9,64),(10,63),(11,62),(12,61),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,52),(22,51),(23,50),(24,49),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,42),(32,41),(33,40),(34,39),(35,38),(36,37)]])
D72 is a maximal subgroup of
D144 C144⋊C2 C9⋊D16 C9⋊SD32 D72⋊7C2 C8⋊D18 D8×D9 D72⋊C2 D72⋊5C2 D216 C3⋊D72 D72⋊C3 C72⋊1S3
D72 is a maximal quotient of
D144 C144⋊C2 Dic72 C72⋊1C4 C2.D72 D216 C3⋊D72 C72⋊1S3
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 6 | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 18A | 18B | 18C | 24A | 24B | 24C | 24D | 36A | ··· | 36F | 72A | ··· | 72L |
order | 1 | 2 | 2 | 2 | 3 | 4 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 36 | 36 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
39 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D4 | D6 | D8 | D9 | D12 | D18 | D24 | D36 | D72 |
kernel | D72 | C72 | D36 | C24 | C18 | C12 | C9 | C8 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 4 | 6 | 12 |
Matrix representation of D72 ►in GL2(𝔽73) generated by
11 | 2 |
71 | 13 |
55 | 23 |
5 | 18 |
G:=sub<GL(2,GF(73))| [11,71,2,13],[55,5,23,18] >;
D72 in GAP, Magma, Sage, TeX
D_{72}
% in TeX
G:=Group("D72");
// GroupNames label
G:=SmallGroup(144,8);
// by ID
G=gap.SmallGroup(144,8);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,79,218,50,2404,208,3461]);
// Polycyclic
G:=Group<a,b|a^72=b^2=1,b*a*b=a^-1>;
// generators/relations
Export