Extensions 1→N→G→Q→1 with N=D6⋊S3 and Q=C2

Direct product G=N×Q with N=D6⋊S3 and Q=C2
dρLabelID
C2×D6⋊S348C2xD6:S3144,150

Semidirect products G=N:Q with N=D6⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
D6⋊S31C2 = C32⋊D8φ: C2/C1C2 ⊆ Out D6⋊S3244D6:S3:1C2144,117
D6⋊S32C2 = D125S3φ: C2/C1C2 ⊆ Out D6⋊S3484-D6:S3:2C2144,138
D6⋊S33C2 = D6⋊D6φ: C2/C1C2 ⊆ Out D6⋊S3244D6:S3:3C2144,145
D6⋊S34C2 = D6.4D6φ: C2/C1C2 ⊆ Out D6⋊S3244-D6:S3:4C2144,148
D6⋊S35C2 = S3×C3⋊D4φ: C2/C1C2 ⊆ Out D6⋊S3244D6:S3:5C2144,153
D6⋊S36C2 = D6.D6φ: trivial image244D6:S3:6C2144,141

Non-split extensions G=N.Q with N=D6⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
D6⋊S3.C2 = C322SD16φ: C2/C1C2 ⊆ Out D6⋊S3244-D6:S3.C2144,118

׿
×
𝔽