Extensions 1→N→G→Q→1 with N=C3×Dic6 and Q=C2

Direct product G=N×Q with N=C3×Dic6 and Q=C2
dρLabelID
C6×Dic648C6xDic6144,158

Semidirect products G=N:Q with N=C3×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic6)⋊1C2 = Dic6⋊S3φ: C2/C1C2 ⊆ Out C3×Dic6484(C3xDic6):1C2144,58
(C3×Dic6)⋊2C2 = C325SD16φ: C2/C1C2 ⊆ Out C3×Dic6244+(C3xDic6):2C2144,60
(C3×Dic6)⋊3C2 = C3×D4.S3φ: C2/C1C2 ⊆ Out C3×Dic6244(C3xDic6):3C2144,81
(C3×Dic6)⋊4C2 = S3×Dic6φ: C2/C1C2 ⊆ Out C3×Dic6484-(C3xDic6):4C2144,137
(C3×Dic6)⋊5C2 = D12⋊S3φ: C2/C1C2 ⊆ Out C3×Dic6244(C3xDic6):5C2144,139
(C3×Dic6)⋊6C2 = Dic3.D6φ: C2/C1C2 ⊆ Out C3×Dic6244(C3xDic6):6C2144,140
(C3×Dic6)⋊7C2 = D6.6D6φ: C2/C1C2 ⊆ Out C3×Dic6244+(C3xDic6):7C2144,142
(C3×Dic6)⋊8C2 = C3×D42S3φ: C2/C1C2 ⊆ Out C3×Dic6244(C3xDic6):8C2144,163
(C3×Dic6)⋊9C2 = C3×S3×Q8φ: C2/C1C2 ⊆ Out C3×Dic6484(C3xDic6):9C2144,164
(C3×Dic6)⋊10C2 = C3×C24⋊C2φ: C2/C1C2 ⊆ Out C3×Dic6482(C3xDic6):10C2144,71
(C3×Dic6)⋊11C2 = C3×C4○D12φ: trivial image242(C3xDic6):11C2144,161

Non-split extensions G=N.Q with N=C3×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic6).1C2 = C322Q16φ: C2/C1C2 ⊆ Out C3×Dic6484(C3xDic6).1C2144,61
(C3×Dic6).2C2 = C323Q16φ: C2/C1C2 ⊆ Out C3×Dic6484-(C3xDic6).2C2144,62
(C3×Dic6).3C2 = C3×C3⋊Q16φ: C2/C1C2 ⊆ Out C3×Dic6484(C3xDic6).3C2144,83
(C3×Dic6).4C2 = C3×Dic12φ: C2/C1C2 ⊆ Out C3×Dic6482(C3xDic6).4C2144,73

׿
×
𝔽