Copied to
clipboard

G = C160order 160 = 25·5

Cyclic group

direct product, cyclic, abelian, monomial

Aliases: C160, also denoted Z160, SmallGroup(160,2)

Series: Derived Chief Lower central Upper central

C1 — C160
C1C2C4C8C16C80 — C160
C1 — C160
C1 — C160

Generators and relations for C160
 G = < a | a160=1 >


Smallest permutation representation of C160
Regular action on 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

C160 is a maximal subgroup of   C52C64  C32⋊D5  D160  C160⋊C2  Dic80

160 conjugacy classes

class 1  2 4A4B5A5B5C5D8A8B8C8D10A10B10C10D16A···16H20A···20H32A···32P40A···40P80A···80AF160A···160BL
order1244555588881010101016···1620···2032···3240···4080···80160···160
size11111111111111111···11···11···11···11···11···1

160 irreducible representations

dim111111111111
type++
imageC1C2C4C5C8C10C16C20C32C40C80C160
kernelC160C80C40C32C20C16C10C8C5C4C2C1
# reps1124448816163264

Matrix representation of C160 in GL1(𝔽641) generated by

498
G:=sub<GL(1,GF(641))| [498] >;

C160 in GAP, Magma, Sage, TeX

C_{160}
% in TeX

G:=Group("C160");
// GroupNames label

G:=SmallGroup(160,2);
// by ID

G=gap.SmallGroup(160,2);
# by ID

G:=PCGroup([6,-2,-5,-2,-2,-2,-2,60,50,69,88]);
// Polycyclic

G:=Group<a|a^160=1>;
// generators/relations

Export

Subgroup lattice of C160 in TeX

׿
×
𝔽