p-group, cyclic, abelian, monomial
Aliases: C32, also denoted Z32, SmallGroup(32,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C32 |
C1 — C32 |
C1 — C32 |
Generators and relations for C32
G = < a | a32=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]])
C32 is a maximal subgroup of
C64 D32 SD64 Q64 C32⋊2C32 C32⋊C32
C2p.C16: M6(2) C3⋊C32 C5⋊2C32 C5⋊C32 C7⋊C32 C11⋊C32 C13⋊2C32 C13⋊C32 ...
C32 is a maximal quotient of
C64 C32⋊2C32 C32⋊C32
Cp⋊C32: C3⋊C32 C5⋊2C32 C5⋊C32 C7⋊C32 C11⋊C32 C13⋊2C32 C13⋊C32 ...
32 conjugacy classes
class | 1 | 2 | 4A | 4B | 8A | 8B | 8C | 8D | 16A | ··· | 16H | 32A | ··· | 32P |
order | 1 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | ··· | 16 | 32 | ··· | 32 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C4 | C8 | C16 | C32 |
kernel | C32 | C16 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 8 | 16 |
Matrix representation of C32 ►in GL1(𝔽97) generated by
20 |
G:=sub<GL(1,GF(97))| [20] >;
C32 in GAP, Magma, Sage, TeX
C_{32}
% in TeX
G:=Group("C32");
// GroupNames label
G:=SmallGroup(32,1);
// by ID
G=gap.SmallGroup(32,1);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-2,10,26,42,58]);
// Polycyclic
G:=Group<a|a^32=1>;
// generators/relations
Export