metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C32⋊3D5, C160⋊6C2, C5⋊3M6(2), D10.1C16, C16.20D10, C80.25C22, Dic5.1C16, C5⋊2C32⋊4C2, C5⋊2C8.2C8, (C4×D5).2C8, (C8×D5).2C4, C8.37(C4×D5), C4.17(C8×D5), C2.3(D5×C16), C5⋊2C16.2C4, C20.56(C2×C8), C40.95(C2×C4), (D5×C16).4C2, C10.12(C2×C16), SmallGroup(320,5)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32⋊D5
G = < a,b,c | a32=b5=c2=1, ab=ba, cac=a17, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 104 80 62 143)(2 105 81 63 144)(3 106 82 64 145)(4 107 83 33 146)(5 108 84 34 147)(6 109 85 35 148)(7 110 86 36 149)(8 111 87 37 150)(9 112 88 38 151)(10 113 89 39 152)(11 114 90 40 153)(12 115 91 41 154)(13 116 92 42 155)(14 117 93 43 156)(15 118 94 44 157)(16 119 95 45 158)(17 120 96 46 159)(18 121 65 47 160)(19 122 66 48 129)(20 123 67 49 130)(21 124 68 50 131)(22 125 69 51 132)(23 126 70 52 133)(24 127 71 53 134)(25 128 72 54 135)(26 97 73 55 136)(27 98 74 56 137)(28 99 75 57 138)(29 100 76 58 139)(30 101 77 59 140)(31 102 78 60 141)(32 103 79 61 142)
(1 143)(2 160)(3 145)(4 130)(5 147)(6 132)(7 149)(8 134)(9 151)(10 136)(11 153)(12 138)(13 155)(14 140)(15 157)(16 142)(17 159)(18 144)(19 129)(20 146)(21 131)(22 148)(23 133)(24 150)(25 135)(26 152)(27 137)(28 154)(29 139)(30 156)(31 141)(32 158)(33 123)(34 108)(35 125)(36 110)(37 127)(38 112)(39 97)(40 114)(41 99)(42 116)(43 101)(44 118)(45 103)(46 120)(47 105)(48 122)(49 107)(50 124)(51 109)(52 126)(53 111)(54 128)(55 113)(56 98)(57 115)(58 100)(59 117)(60 102)(61 119)(62 104)(63 121)(64 106)(65 81)(67 83)(69 85)(71 87)(73 89)(75 91)(77 93)(79 95)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,104,80,62,143)(2,105,81,63,144)(3,106,82,64,145)(4,107,83,33,146)(5,108,84,34,147)(6,109,85,35,148)(7,110,86,36,149)(8,111,87,37,150)(9,112,88,38,151)(10,113,89,39,152)(11,114,90,40,153)(12,115,91,41,154)(13,116,92,42,155)(14,117,93,43,156)(15,118,94,44,157)(16,119,95,45,158)(17,120,96,46,159)(18,121,65,47,160)(19,122,66,48,129)(20,123,67,49,130)(21,124,68,50,131)(22,125,69,51,132)(23,126,70,52,133)(24,127,71,53,134)(25,128,72,54,135)(26,97,73,55,136)(27,98,74,56,137)(28,99,75,57,138)(29,100,76,58,139)(30,101,77,59,140)(31,102,78,60,141)(32,103,79,61,142), (1,143)(2,160)(3,145)(4,130)(5,147)(6,132)(7,149)(8,134)(9,151)(10,136)(11,153)(12,138)(13,155)(14,140)(15,157)(16,142)(17,159)(18,144)(19,129)(20,146)(21,131)(22,148)(23,133)(24,150)(25,135)(26,152)(27,137)(28,154)(29,139)(30,156)(31,141)(32,158)(33,123)(34,108)(35,125)(36,110)(37,127)(38,112)(39,97)(40,114)(41,99)(42,116)(43,101)(44,118)(45,103)(46,120)(47,105)(48,122)(49,107)(50,124)(51,109)(52,126)(53,111)(54,128)(55,113)(56,98)(57,115)(58,100)(59,117)(60,102)(61,119)(62,104)(63,121)(64,106)(65,81)(67,83)(69,85)(71,87)(73,89)(75,91)(77,93)(79,95)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,104,80,62,143)(2,105,81,63,144)(3,106,82,64,145)(4,107,83,33,146)(5,108,84,34,147)(6,109,85,35,148)(7,110,86,36,149)(8,111,87,37,150)(9,112,88,38,151)(10,113,89,39,152)(11,114,90,40,153)(12,115,91,41,154)(13,116,92,42,155)(14,117,93,43,156)(15,118,94,44,157)(16,119,95,45,158)(17,120,96,46,159)(18,121,65,47,160)(19,122,66,48,129)(20,123,67,49,130)(21,124,68,50,131)(22,125,69,51,132)(23,126,70,52,133)(24,127,71,53,134)(25,128,72,54,135)(26,97,73,55,136)(27,98,74,56,137)(28,99,75,57,138)(29,100,76,58,139)(30,101,77,59,140)(31,102,78,60,141)(32,103,79,61,142), (1,143)(2,160)(3,145)(4,130)(5,147)(6,132)(7,149)(8,134)(9,151)(10,136)(11,153)(12,138)(13,155)(14,140)(15,157)(16,142)(17,159)(18,144)(19,129)(20,146)(21,131)(22,148)(23,133)(24,150)(25,135)(26,152)(27,137)(28,154)(29,139)(30,156)(31,141)(32,158)(33,123)(34,108)(35,125)(36,110)(37,127)(38,112)(39,97)(40,114)(41,99)(42,116)(43,101)(44,118)(45,103)(46,120)(47,105)(48,122)(49,107)(50,124)(51,109)(52,126)(53,111)(54,128)(55,113)(56,98)(57,115)(58,100)(59,117)(60,102)(61,119)(62,104)(63,121)(64,106)(65,81)(67,83)(69,85)(71,87)(73,89)(75,91)(77,93)(79,95) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,104,80,62,143),(2,105,81,63,144),(3,106,82,64,145),(4,107,83,33,146),(5,108,84,34,147),(6,109,85,35,148),(7,110,86,36,149),(8,111,87,37,150),(9,112,88,38,151),(10,113,89,39,152),(11,114,90,40,153),(12,115,91,41,154),(13,116,92,42,155),(14,117,93,43,156),(15,118,94,44,157),(16,119,95,45,158),(17,120,96,46,159),(18,121,65,47,160),(19,122,66,48,129),(20,123,67,49,130),(21,124,68,50,131),(22,125,69,51,132),(23,126,70,52,133),(24,127,71,53,134),(25,128,72,54,135),(26,97,73,55,136),(27,98,74,56,137),(28,99,75,57,138),(29,100,76,58,139),(30,101,77,59,140),(31,102,78,60,141),(32,103,79,61,142)], [(1,143),(2,160),(3,145),(4,130),(5,147),(6,132),(7,149),(8,134),(9,151),(10,136),(11,153),(12,138),(13,155),(14,140),(15,157),(16,142),(17,159),(18,144),(19,129),(20,146),(21,131),(22,148),(23,133),(24,150),(25,135),(26,152),(27,137),(28,154),(29,139),(30,156),(31,141),(32,158),(33,123),(34,108),(35,125),(36,110),(37,127),(38,112),(39,97),(40,114),(41,99),(42,116),(43,101),(44,118),(45,103),(46,120),(47,105),(48,122),(49,107),(50,124),(51,109),(52,126),(53,111),(54,128),(55,113),(56,98),(57,115),(58,100),(59,117),(60,102),(61,119),(62,104),(63,121),(64,106),(65,81),(67,83),(69,85),(71,87),(73,89),(75,91),(77,93),(79,95)]])
104 conjugacy classes
| class | 1 | 2A | 2B | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 8F | 10A | 10B | 16A | ··· | 16H | 16I | 16J | 16K | 16L | 20A | 20B | 20C | 20D | 32A | ··· | 32H | 32I | ··· | 32P | 40A | ··· | 40H | 80A | ··· | 80P | 160A | ··· | 160AF |
| order | 1 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 16 | ··· | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 32 | ··· | 32 | 32 | ··· | 32 | 40 | ··· | 40 | 80 | ··· | 80 | 160 | ··· | 160 |
| size | 1 | 1 | 10 | 1 | 1 | 10 | 2 | 2 | 1 | 1 | 1 | 1 | 10 | 10 | 2 | 2 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
104 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | |||||||||||
| image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | C16 | D5 | D10 | C4×D5 | M6(2) | C8×D5 | D5×C16 | C32⋊D5 |
| kernel | C32⋊D5 | C5⋊2C32 | C160 | D5×C16 | C5⋊2C16 | C8×D5 | C5⋊2C8 | C4×D5 | Dic5 | D10 | C32 | C16 | C8 | C5 | C4 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 2 | 2 | 4 | 8 | 8 | 16 | 32 |
Matrix representation of C32⋊D5 ►in GL2(𝔽641) generated by
| 540 | 252 |
| 389 | 101 |
| 0 | 1 |
| 640 | 362 |
| 0 | 1 |
| 1 | 0 |
G:=sub<GL(2,GF(641))| [540,389,252,101],[0,640,1,362],[0,1,1,0] >;
C32⋊D5 in GAP, Magma, Sage, TeX
C_{32}\rtimes D_5 % in TeX
G:=Group("C32:D5"); // GroupNames label
G:=SmallGroup(320,5);
// by ID
G=gap.SmallGroup(320,5);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,36,58,80,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^32=b^5=c^2=1,a*b=b*a,c*a*c=a^17,c*b*c=b^-1>;
// generators/relations
Export