Copied to
clipboard

G = C16⋊D10order 320 = 26·5

3rd semidirect product of C16 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D806C2, C163D10, C803C22, Q162D10, SD321D5, D8.3D10, D10.15D8, D406C22, C40.17C23, Dic5.17D8, (D5×D8)⋊5C2, C4.5(D4×D5), C5⋊D163C2, (C4×D5).8D4, C80⋊C21C2, C2.20(D5×D8), C52C8.3D4, C53(C16⋊C22), (C5×SD32)⋊1C2, C10.36(C2×D8), C20.11(C2×D4), C5⋊SD322C2, Q8.D103C2, C52C162C22, (C5×Q16)⋊5C22, (C8×D5).4C22, (C5×D8).3C22, C8.23(C22×D5), SmallGroup(320,541)

Series: Derived Chief Lower central Upper central

C1C40 — C16⋊D10
C1C5C10C20C40C8×D5D5×D8 — C16⋊D10
C5C10C20C40 — C16⋊D10
C1C2C4C8SD32

Generators and relations for C16⋊D10
 G = < a,b,c | a16=b10=c2=1, bab-1=a7, cac=a-1, cbc=b-1 >

Subgroups: 566 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, Q8, C23, D5, C10, C10, C16, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, M5(2), D16, SD32, SD32, C2×D8, C4○D8, C52C8, C40, C4×D5, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C16⋊C22, C52C16, C80, C8×D5, D40, D4⋊D5, Q8⋊D5, C5×D8, C5×Q16, D4×D5, Q82D5, C80⋊C2, D80, C5⋊D16, C5⋊SD32, C5×SD32, D5×D8, Q8.D10, C16⋊D10
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C22×D5, C16⋊C22, D4×D5, D5×D8, C16⋊D10

Smallest permutation representation of C16⋊D10
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 53 36 22 73)(2 60 37 29 74 8 54 43 23 80)(3 51 38 20 75 15 55 34 24 71)(4 58 39 27 76 6 56 41 25 78)(5 49 40 18 77 13 57 48 26 69)(7 63 42 32 79 11 59 46 28 67)(9 61 44 30 65)(10 52 45 21 66 16 62 35 31 72)(12 50 47 19 68 14 64 33 17 70)
(1 73)(2 72)(3 71)(4 70)(5 69)(6 68)(7 67)(8 66)(9 65)(10 80)(11 79)(12 78)(13 77)(14 76)(15 75)(16 74)(17 58)(18 57)(19 56)(20 55)(21 54)(22 53)(23 52)(24 51)(25 50)(26 49)(27 64)(28 63)(29 62)(30 61)(31 60)(32 59)(33 39)(34 38)(35 37)(40 48)(41 47)(42 46)(43 45)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,53,36,22,73)(2,60,37,29,74,8,54,43,23,80)(3,51,38,20,75,15,55,34,24,71)(4,58,39,27,76,6,56,41,25,78)(5,49,40,18,77,13,57,48,26,69)(7,63,42,32,79,11,59,46,28,67)(9,61,44,30,65)(10,52,45,21,66,16,62,35,31,72)(12,50,47,19,68,14,64,33,17,70), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,80)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,58)(18,57)(19,56)(20,55)(21,54)(22,53)(23,52)(24,51)(25,50)(26,49)(27,64)(28,63)(29,62)(30,61)(31,60)(32,59)(33,39)(34,38)(35,37)(40,48)(41,47)(42,46)(43,45)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,53,36,22,73)(2,60,37,29,74,8,54,43,23,80)(3,51,38,20,75,15,55,34,24,71)(4,58,39,27,76,6,56,41,25,78)(5,49,40,18,77,13,57,48,26,69)(7,63,42,32,79,11,59,46,28,67)(9,61,44,30,65)(10,52,45,21,66,16,62,35,31,72)(12,50,47,19,68,14,64,33,17,70), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,80)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,58)(18,57)(19,56)(20,55)(21,54)(22,53)(23,52)(24,51)(25,50)(26,49)(27,64)(28,63)(29,62)(30,61)(31,60)(32,59)(33,39)(34,38)(35,37)(40,48)(41,47)(42,46)(43,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,53,36,22,73),(2,60,37,29,74,8,54,43,23,80),(3,51,38,20,75,15,55,34,24,71),(4,58,39,27,76,6,56,41,25,78),(5,49,40,18,77,13,57,48,26,69),(7,63,42,32,79,11,59,46,28,67),(9,61,44,30,65),(10,52,45,21,66,16,62,35,31,72),(12,50,47,19,68,14,64,33,17,70)], [(1,73),(2,72),(3,71),(4,70),(5,69),(6,68),(7,67),(8,66),(9,65),(10,80),(11,79),(12,78),(13,77),(14,76),(15,75),(16,74),(17,58),(18,57),(19,56),(20,55),(21,54),(22,53),(23,52),(24,51),(25,50),(26,49),(27,64),(28,63),(29,62),(30,61),(31,60),(32,59),(33,39),(34,38),(35,37),(40,48),(41,47),(42,46),(43,45)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B8A8B8C10A10B10C10D16A16B16C16D20A20B20C20D40A40B40C40D80A···80H
order122222444558881010101016161616202020204040404080···80
size118104040281022222022161644202044161644444···4

38 irreducible representations

dim11111111222222224444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5D8D8D10D10D10C16⋊C22D4×D5D5×D8C16⋊D10
kernelC16⋊D10C80⋊C2D80C5⋊D16C5⋊SD32C5×SD32D5×D8Q8.D10C52C8C4×D5SD32Dic5D10C16D8Q16C5C4C2C1
# reps11111111112222222248

Matrix representation of C16⋊D10 in GL4(𝔽241) generated by

209679264
643221328
204119133146
2048595108
,
18919000
52000
01165151
1181251901
,
52100
18918900
01165151
12371190
G:=sub<GL(4,GF(241))| [209,64,204,204,67,32,119,85,92,213,133,95,64,28,146,108],[189,52,0,118,190,0,116,125,0,0,51,190,0,0,51,1],[52,189,0,123,1,189,116,7,0,0,51,1,0,0,51,190] >;

C16⋊D10 in GAP, Magma, Sage, TeX

C_{16}\rtimes D_{10}
% in TeX

G:=Group("C16:D10");
// GroupNames label

G:=SmallGroup(320,541);
// by ID

G=gap.SmallGroup(320,541);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,135,184,346,185,192,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^16=b^10=c^2=1,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽