Copied to
clipboard

G = D7⋊A4order 168 = 23·3·7

The semidirect product of D7 and A4 acting via A4/C22=C3

metabelian, soluble, monomial, A-group

Aliases: D7⋊A4, C22⋊F7, C7⋊A4⋊C2, C7⋊(C2×A4), (C2×C14)⋊2C6, (C22×D7)⋊2C3, SmallGroup(168,49)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D7⋊A4
C1C7C2×C14C7⋊A4 — D7⋊A4
C2×C14 — D7⋊A4
C1

Generators and relations for D7⋊A4
 G = < a,b,c,d,e | a7=b2=c2=d2=e3=1, bab=a-1, ac=ca, ad=da, eae-1=a2, bc=cb, bd=db, ebe-1=ab, ece-1=cd=dc, ede-1=c >

3C2
7C2
21C2
28C3
21C22
21C22
28C6
3C14
3D7
4C7⋊C3
7C23
7A4
3D14
3D14
4F7
7C2×A4

Character table of D7⋊A4

 class 12A2B2C3A3B6A6B714A14B14C
 size 13721282828286666
ρ1111111111111    trivial
ρ211-1-111-1-11111    linear of order 2
ρ311-1-1ζ3ζ32ζ6ζ651111    linear of order 6
ρ41111ζ32ζ3ζ3ζ321111    linear of order 3
ρ511-1-1ζ32ζ3ζ65ζ61111    linear of order 6
ρ61111ζ3ζ32ζ32ζ31111    linear of order 3
ρ73-1-3100003-1-1-1    orthogonal lifted from C2×A4
ρ83-13-100003-1-1-1    orthogonal lifted from A4
ρ966000000-1-1-1-1    orthogonal lifted from F7
ρ106-2000000-176+2ζ7+175+2ζ72+174+2ζ73+1    orthogonal faithful
ρ116-2000000-174+2ζ73+176+2ζ7+175+2ζ72+1    orthogonal faithful
ρ126-2000000-175+2ζ72+174+2ζ73+176+2ζ7+1    orthogonal faithful

Permutation representations of D7⋊A4
On 28 points - transitive group 28T28
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(2 5 3)(4 6 7)(8 28 17)(9 25 19)(10 22 21)(11 26 16)(12 23 18)(13 27 20)(14 24 15)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (2,5,3)(4,6,7)(8,28,17)(9,25,19)(10,22,21)(11,26,16)(12,23,18)(13,27,20)(14,24,15)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (2,5,3)(4,6,7)(8,28,17)(9,25,19)(10,22,21)(11,26,16)(12,23,18)(13,27,20)(14,24,15) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(2,5,3),(4,6,7),(8,28,17),(9,25,19),(10,22,21),(11,26,16),(12,23,18),(13,27,20),(14,24,15)]])

G:=TransitiveGroup(28,28);

D7⋊A4 is a maximal quotient of   Q8.F7  Q8⋊F7  Dic7⋊A4

Matrix representation of D7⋊A4 in GL6(𝔽43)

4210000
4201000
4200100
4200010
4200001
4200000
,
4200000
4200001
4200010
4200100
4201000
4210000
,
283380540
031413852
403264102
204126340
253841310
405038328
,
313820415
026402413
538284003
304028385
341240260
541023831
,
010000
000100
000001
100000
001000
000010

G:=sub<GL(6,GF(43))| [42,42,42,42,42,42,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[42,42,42,42,42,42,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0],[28,0,40,2,2,40,3,31,3,0,5,5,38,41,26,41,38,0,0,38,41,26,41,38,5,5,0,3,31,3,40,2,2,40,0,28],[31,0,5,3,3,5,38,26,38,0,41,41,2,40,28,40,2,0,0,2,40,28,40,2,41,41,0,38,26,38,5,3,3,5,0,31],[0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0] >;

D7⋊A4 in GAP, Magma, Sage, TeX

D_7\rtimes A_4
% in TeX

G:=Group("D7:A4");
// GroupNames label

G:=SmallGroup(168,49);
// by ID

G=gap.SmallGroup(168,49);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-7,97,188,3604,1209]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^2=d^2=e^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^2,b*c=c*b,b*d=d*b,e*b*e^-1=a*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of D7⋊A4 in TeX
Character table of D7⋊A4 in TeX

׿
×
𝔽