metabelian, soluble, monomial, A-group
Aliases: D7⋊A4, C22⋊F7, C7⋊A4⋊C2, C7⋊(C2×A4), (C2×C14)⋊2C6, (C22×D7)⋊2C3, SmallGroup(168,49)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C2×C14 — C7⋊A4 — D7⋊A4 |
C2×C14 — D7⋊A4 |
Generators and relations for D7⋊A4
G = < a,b,c,d,e | a7=b2=c2=d2=e3=1, bab=a-1, ac=ca, ad=da, eae-1=a2, bc=cb, bd=db, ebe-1=ab, ece-1=cd=dc, ede-1=c >
Character table of D7⋊A4
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 7 | 14A | 14B | 14C | |
size | 1 | 3 | 7 | 21 | 28 | 28 | 28 | 28 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 3 | -1 | -3 | 1 | 0 | 0 | 0 | 0 | 3 | -1 | -1 | -1 | orthogonal lifted from C2×A4 |
ρ8 | 3 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 3 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ9 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ10 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ76+2ζ7+1 | 2ζ75+2ζ72+1 | 2ζ74+2ζ73+1 | orthogonal faithful |
ρ11 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ74+2ζ73+1 | 2ζ76+2ζ7+1 | 2ζ75+2ζ72+1 | orthogonal faithful |
ρ12 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ75+2ζ72+1 | 2ζ74+2ζ73+1 | 2ζ76+2ζ7+1 | orthogonal faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(2 5 3)(4 6 7)(8 28 17)(9 25 19)(10 22 21)(11 26 16)(12 23 18)(13 27 20)(14 24 15)
G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (2,5,3)(4,6,7)(8,28,17)(9,25,19)(10,22,21)(11,26,16)(12,23,18)(13,27,20)(14,24,15)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (2,5,3)(4,6,7)(8,28,17)(9,25,19)(10,22,21)(11,26,16)(12,23,18)(13,27,20)(14,24,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(2,5,3),(4,6,7),(8,28,17),(9,25,19),(10,22,21),(11,26,16),(12,23,18),(13,27,20),(14,24,15)]])
G:=TransitiveGroup(28,28);
D7⋊A4 is a maximal quotient of Q8.F7 Q8⋊F7 Dic7⋊A4
Matrix representation of D7⋊A4 ►in GL6(𝔽43)
42 | 1 | 0 | 0 | 0 | 0 |
42 | 0 | 1 | 0 | 0 | 0 |
42 | 0 | 0 | 1 | 0 | 0 |
42 | 0 | 0 | 0 | 1 | 0 |
42 | 0 | 0 | 0 | 0 | 1 |
42 | 0 | 0 | 0 | 0 | 0 |
42 | 0 | 0 | 0 | 0 | 0 |
42 | 0 | 0 | 0 | 0 | 1 |
42 | 0 | 0 | 0 | 1 | 0 |
42 | 0 | 0 | 1 | 0 | 0 |
42 | 0 | 1 | 0 | 0 | 0 |
42 | 1 | 0 | 0 | 0 | 0 |
28 | 3 | 38 | 0 | 5 | 40 |
0 | 31 | 41 | 38 | 5 | 2 |
40 | 3 | 26 | 41 | 0 | 2 |
2 | 0 | 41 | 26 | 3 | 40 |
2 | 5 | 38 | 41 | 31 | 0 |
40 | 5 | 0 | 38 | 3 | 28 |
31 | 38 | 2 | 0 | 41 | 5 |
0 | 26 | 40 | 2 | 41 | 3 |
5 | 38 | 28 | 40 | 0 | 3 |
3 | 0 | 40 | 28 | 38 | 5 |
3 | 41 | 2 | 40 | 26 | 0 |
5 | 41 | 0 | 2 | 38 | 31 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(43))| [42,42,42,42,42,42,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[42,42,42,42,42,42,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0],[28,0,40,2,2,40,3,31,3,0,5,5,38,41,26,41,38,0,0,38,41,26,41,38,5,5,0,3,31,3,40,2,2,40,0,28],[31,0,5,3,3,5,38,26,38,0,41,41,2,40,28,40,2,0,0,2,40,28,40,2,41,41,0,38,26,38,5,3,3,5,0,31],[0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0] >;
D7⋊A4 in GAP, Magma, Sage, TeX
D_7\rtimes A_4
% in TeX
G:=Group("D7:A4");
// GroupNames label
G:=SmallGroup(168,49);
// by ID
G=gap.SmallGroup(168,49);
# by ID
G:=PCGroup([5,-2,-3,-2,2,-7,97,188,3604,1209]);
// Polycyclic
G:=Group<a,b,c,d,e|a^7=b^2=c^2=d^2=e^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^2,b*c=c*b,b*d=d*b,e*b*e^-1=a*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations
Export
Subgroup lattice of D7⋊A4 in TeX
Character table of D7⋊A4 in TeX