Copied to
clipboard

G = C2×C7⋊C12order 168 = 23·3·7

Direct product of C2 and C7⋊C12

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C7⋊C12, C14⋊C12, C22.F7, Dic73C6, C72(C2×C12), (C2×C14).C6, (C2×Dic7)⋊C3, C2.2(C2×F7), C14.4(C2×C6), (C2×C7⋊C3)⋊C4, C7⋊C32(C2×C4), (C22×C7⋊C3).C2, (C2×C7⋊C3).4C22, SmallGroup(168,10)

Series: Derived Chief Lower central Upper central

C1C7 — C2×C7⋊C12
C1C7C14C2×C7⋊C3C7⋊C12 — C2×C7⋊C12
C7 — C2×C7⋊C12
C1C22

Generators and relations for C2×C7⋊C12
 G = < a,b,c | a2=b7=c12=1, ab=ba, ac=ca, cbc-1=b5 >

7C3
7C4
7C4
7C6
7C6
7C6
7C2×C4
7C12
7C12
7C2×C6
7C2×C12

Character table of C2×C7⋊C12

 class 12A2B2C3A3B4A4B4C4D6A6B6C6D6E6F712A12B12C12D12E12F12G12H14A14B14C
 size 1111777777777777677777777666
ρ11111111111111111111111111111    trivial
ρ21-1-11111-1-11-1-11-1-1111-1-1-1111-11-1-1    linear of order 2
ρ3111111-1-1-1-11111111-1-1-1-1-1-1-1-1111    linear of order 2
ρ41-1-1111-111-1-1-11-1-111-1111-1-1-111-1-1    linear of order 2
ρ51-1-11ζ32ζ31-1-11ζ65ζ65ζ3ζ6ζ6ζ321ζ3ζ6ζ65ζ65ζ32ζ32ζ3ζ61-1-1    linear of order 6
ρ61111ζ3ζ321111ζ32ζ32ζ32ζ3ζ3ζ31ζ32ζ3ζ32ζ32ζ3ζ3ζ32ζ3111    linear of order 3
ρ71-1-11ζ32ζ3-111-1ζ65ζ65ζ3ζ6ζ6ζ321ζ65ζ32ζ3ζ3ζ6ζ6ζ65ζ321-1-1    linear of order 6
ρ81-1-11ζ3ζ321-1-11ζ6ζ6ζ32ζ65ζ65ζ31ζ32ζ65ζ6ζ6ζ3ζ3ζ32ζ651-1-1    linear of order 6
ρ91111ζ3ζ32-1-1-1-1ζ32ζ32ζ32ζ3ζ3ζ31ζ6ζ65ζ6ζ6ζ65ζ65ζ6ζ65111    linear of order 6
ρ101111ζ32ζ31111ζ3ζ3ζ3ζ32ζ32ζ321ζ3ζ32ζ3ζ3ζ32ζ32ζ3ζ32111    linear of order 3
ρ111-1-11ζ3ζ32-111-1ζ6ζ6ζ32ζ65ζ65ζ31ζ6ζ3ζ32ζ32ζ65ζ65ζ6ζ31-1-1    linear of order 6
ρ121111ζ32ζ3-1-1-1-1ζ3ζ3ζ3ζ32ζ32ζ321ζ65ζ6ζ65ζ65ζ6ζ6ζ65ζ6111    linear of order 6
ρ1311-1-111ii-i-i-11-1-11-11i-ii-i-ii-ii-11-1    linear of order 4
ρ141-11-111-ii-ii1-1-11-1-11-i-ii-ii-iii-1-11    linear of order 4
ρ151-11-111i-ii-i1-1-11-1-11ii-ii-ii-i-i-1-11    linear of order 4
ρ1611-1-111-i-iii-11-1-11-11-ii-iii-ii-i-11-1    linear of order 4
ρ171-11-1ζ3ζ32i-ii-iζ32ζ6ζ6ζ3ζ65ζ651ζ4ζ32ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32ζ43ζ3-1-11    linear of order 12
ρ1811-1-1ζ32ζ3-i-iiiζ65ζ3ζ65ζ6ζ32ζ61ζ43ζ3ζ4ζ32ζ43ζ3ζ4ζ3ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ32-11-1    linear of order 12
ρ191-11-1ζ32ζ3-ii-iiζ3ζ65ζ65ζ32ζ6ζ61ζ43ζ3ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3ζ4ζ32-1-11    linear of order 12
ρ2011-1-1ζ3ζ32ii-i-iζ6ζ32ζ6ζ65ζ3ζ651ζ4ζ32ζ43ζ3ζ4ζ32ζ43ζ32ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ3-11-1    linear of order 12
ρ2111-1-1ζ32ζ3ii-i-iζ65ζ3ζ65ζ6ζ32ζ61ζ4ζ3ζ43ζ32ζ4ζ3ζ43ζ3ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ32-11-1    linear of order 12
ρ221-11-1ζ3ζ32-ii-iiζ32ζ6ζ6ζ3ζ65ζ651ζ43ζ32ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32ζ4ζ3-1-11    linear of order 12
ρ231-11-1ζ32ζ3i-ii-iζ3ζ65ζ65ζ32ζ6ζ61ζ4ζ3ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3ζ43ζ32-1-11    linear of order 12
ρ2411-1-1ζ3ζ32-i-iiiζ6ζ32ζ6ζ65ζ3ζ651ζ43ζ32ζ4ζ3ζ43ζ32ζ4ζ32ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ3-11-1    linear of order 12
ρ256-6-66000000000000-100000000-111    orthogonal lifted from C2×F7
ρ266666000000000000-100000000-1-1-1    orthogonal lifted from F7
ρ276-66-6000000000000-10000000011-1    symplectic lifted from C7⋊C12, Schur index 2
ρ2866-6-6000000000000-1000000001-11    symplectic lifted from C7⋊C12, Schur index 2

Smallest permutation representation of C2×C7⋊C12
On 56 points
Generators in S56
(1 7)(2 8)(3 5)(4 6)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 21)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(43 45)(44 46)
(1 28 24 53 32 45 49)(2 46 54 29 50 21 25)(3 22 30 47 26 51 55)(4 52 48 23 56 27 31)(5 9 17 33 13 37 41)(6 38 34 10 42 14 18)(7 15 11 39 19 43 35)(8 44 40 16 36 20 12)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56)

G:=sub<Sym(56)| (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,21)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,45)(44,46), (1,28,24,53,32,45,49)(2,46,54,29,50,21,25)(3,22,30,47,26,51,55)(4,52,48,23,56,27,31)(5,9,17,33,13,37,41)(6,38,34,10,42,14,18)(7,15,11,39,19,43,35)(8,44,40,16,36,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56)>;

G:=Group( (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,21)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,45)(44,46), (1,28,24,53,32,45,49)(2,46,54,29,50,21,25)(3,22,30,47,26,51,55)(4,52,48,23,56,27,31)(5,9,17,33,13,37,41)(6,38,34,10,42,14,18)(7,15,11,39,19,43,35)(8,44,40,16,36,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56) );

G=PermutationGroup([[(1,7),(2,8),(3,5),(4,6),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,21),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(43,45),(44,46)], [(1,28,24,53,32,45,49),(2,46,54,29,50,21,25),(3,22,30,47,26,51,55),(4,52,48,23,56,27,31),(5,9,17,33,13,37,41),(6,38,34,10,42,14,18),(7,15,11,39,19,43,35),(8,44,40,16,36,20,12)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56)]])

C2×C7⋊C12 is a maximal subgroup of   Dic7⋊C12  C28⋊C12  D14⋊C12  C23.2F7  C2×C4×F7  D42F7
C2×C7⋊C12 is a maximal quotient of   C28.C12  C28⋊C12  C23.2F7

Matrix representation of C2×C7⋊C12 in GL7(𝔽337)

336000000
033600000
003360000
000336000
000033600
000003360
000000336
,
1000000
000000336
010000336
001000336
000100336
000010336
000001336
,
209000000
0450045113292
0454511302920
01580292452920
0045292450113
00450158292292
04515829200292

G:=sub<GL(7,GF(337))| [336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,336,336,336,336,336,336],[209,0,0,0,0,0,0,0,45,45,158,0,0,45,0,0,45,0,45,45,158,0,0,113,292,292,0,292,0,45,0,45,45,158,0,0,113,292,292,0,292,0,0,292,0,0,113,292,292] >;

C2×C7⋊C12 in GAP, Magma, Sage, TeX

C_2\times C_7\rtimes C_{12}
% in TeX

G:=Group("C2xC7:C12");
// GroupNames label

G:=SmallGroup(168,10);
// by ID

G=gap.SmallGroup(168,10);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-7,60,3604,614]);
// Polycyclic

G:=Group<a,b,c|a^2=b^7=c^12=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C2×C7⋊C12 in TeX
Character table of C2×C7⋊C12 in TeX

׿
×
𝔽