direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C2×C7⋊C12, C14⋊C12, C22.F7, Dic7⋊3C6, C7⋊2(C2×C12), (C2×C14).C6, (C2×Dic7)⋊C3, C2.2(C2×F7), C14.4(C2×C6), (C2×C7⋊C3)⋊C4, C7⋊C3⋊2(C2×C4), (C22×C7⋊C3).C2, (C2×C7⋊C3).4C22, SmallGroup(168,10)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C2×C7⋊C3 — C7⋊C12 — C2×C7⋊C12 |
C7 — C2×C7⋊C12 |
Generators and relations for C2×C7⋊C12
G = < a,b,c | a2=b7=c12=1, ab=ba, ac=ca, cbc-1=b5 >
Character table of C2×C7⋊C12
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 7 | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 14A | 14B | 14C | |
size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | -1 | -1 | 1 | ζ65 | ζ65 | ζ3 | ζ6 | ζ6 | ζ32 | 1 | ζ3 | ζ6 | ζ65 | ζ65 | ζ32 | ζ32 | ζ3 | ζ6 | 1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | -1 | 1 | 1 | -1 | ζ65 | ζ65 | ζ3 | ζ6 | ζ6 | ζ32 | 1 | ζ65 | ζ32 | ζ3 | ζ3 | ζ6 | ζ6 | ζ65 | ζ32 | 1 | -1 | -1 | linear of order 6 |
ρ8 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | -1 | -1 | 1 | ζ6 | ζ6 | ζ32 | ζ65 | ζ65 | ζ3 | 1 | ζ32 | ζ65 | ζ6 | ζ6 | ζ3 | ζ3 | ζ32 | ζ65 | 1 | -1 | -1 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | 1 | 1 | 1 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | linear of order 3 |
ρ11 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | -1 | 1 | 1 | -1 | ζ6 | ζ6 | ζ32 | ζ65 | ζ65 | ζ3 | 1 | ζ6 | ζ3 | ζ32 | ζ32 | ζ65 | ζ65 | ζ6 | ζ3 | 1 | -1 | -1 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | 1 | 1 | 1 | linear of order 6 |
ρ13 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -i | i | -i | i | -1 | 1 | -1 | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | -i | i | -i | i | i | -1 | -1 | 1 | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | i | -i | i | -i | -i | -1 | -1 | 1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | i | -i | i | -i | -1 | 1 | -1 | linear of order 4 |
ρ17 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | i | -i | i | -i | ζ32 | ζ6 | ζ6 | ζ3 | ζ65 | ζ65 | 1 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | -1 | -1 | 1 | linear of order 12 |
ρ18 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -i | -i | i | i | ζ65 | ζ3 | ζ65 | ζ6 | ζ32 | ζ6 | 1 | ζ43ζ3 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ32 | -1 | 1 | -1 | linear of order 12 |
ρ19 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | -i | i | -i | i | ζ3 | ζ65 | ζ65 | ζ32 | ζ6 | ζ6 | 1 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | -1 | -1 | 1 | linear of order 12 |
ρ20 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | i | i | -i | -i | ζ6 | ζ32 | ζ6 | ζ65 | ζ3 | ζ65 | 1 | ζ4ζ32 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ3 | -1 | 1 | -1 | linear of order 12 |
ρ21 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | i | i | -i | -i | ζ65 | ζ3 | ζ65 | ζ6 | ζ32 | ζ6 | 1 | ζ4ζ3 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ32 | -1 | 1 | -1 | linear of order 12 |
ρ22 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | -i | i | -i | i | ζ32 | ζ6 | ζ6 | ζ3 | ζ65 | ζ65 | 1 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | -1 | -1 | 1 | linear of order 12 |
ρ23 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | i | -i | i | -i | ζ3 | ζ65 | ζ65 | ζ32 | ζ6 | ζ6 | 1 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | -1 | -1 | 1 | linear of order 12 |
ρ24 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -i | -i | i | i | ζ6 | ζ32 | ζ6 | ζ65 | ζ3 | ζ65 | 1 | ζ43ζ32 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ3 | -1 | 1 | -1 | linear of order 12 |
ρ25 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from C2×F7 |
ρ26 | 6 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ27 | 6 | -6 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | symplectic lifted from C7⋊C12, Schur index 2 |
ρ28 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | symplectic lifted from C7⋊C12, Schur index 2 |
(1 7)(2 8)(3 5)(4 6)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 21)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(43 45)(44 46)
(1 28 24 53 32 45 49)(2 46 54 29 50 21 25)(3 22 30 47 26 51 55)(4 52 48 23 56 27 31)(5 9 17 33 13 37 41)(6 38 34 10 42 14 18)(7 15 11 39 19 43 35)(8 44 40 16 36 20 12)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56)
G:=sub<Sym(56)| (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,21)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,45)(44,46), (1,28,24,53,32,45,49)(2,46,54,29,50,21,25)(3,22,30,47,26,51,55)(4,52,48,23,56,27,31)(5,9,17,33,13,37,41)(6,38,34,10,42,14,18)(7,15,11,39,19,43,35)(8,44,40,16,36,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56)>;
G:=Group( (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,21)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,45)(44,46), (1,28,24,53,32,45,49)(2,46,54,29,50,21,25)(3,22,30,47,26,51,55)(4,52,48,23,56,27,31)(5,9,17,33,13,37,41)(6,38,34,10,42,14,18)(7,15,11,39,19,43,35)(8,44,40,16,36,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56) );
G=PermutationGroup([[(1,7),(2,8),(3,5),(4,6),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,21),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(43,45),(44,46)], [(1,28,24,53,32,45,49),(2,46,54,29,50,21,25),(3,22,30,47,26,51,55),(4,52,48,23,56,27,31),(5,9,17,33,13,37,41),(6,38,34,10,42,14,18),(7,15,11,39,19,43,35),(8,44,40,16,36,20,12)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56)]])
C2×C7⋊C12 is a maximal subgroup of
Dic7⋊C12 C28⋊C12 D14⋊C12 C23.2F7 C2×C4×F7 D4⋊2F7
C2×C7⋊C12 is a maximal quotient of C28.C12 C28⋊C12 C23.2F7
Matrix representation of C2×C7⋊C12 ►in GL7(𝔽337)
336 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 |
0 | 1 | 0 | 0 | 0 | 0 | 336 |
0 | 0 | 1 | 0 | 0 | 0 | 336 |
0 | 0 | 0 | 1 | 0 | 0 | 336 |
0 | 0 | 0 | 0 | 1 | 0 | 336 |
0 | 0 | 0 | 0 | 0 | 1 | 336 |
209 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 45 | 0 | 0 | 45 | 113 | 292 |
0 | 45 | 45 | 113 | 0 | 292 | 0 |
0 | 158 | 0 | 292 | 45 | 292 | 0 |
0 | 0 | 45 | 292 | 45 | 0 | 113 |
0 | 0 | 45 | 0 | 158 | 292 | 292 |
0 | 45 | 158 | 292 | 0 | 0 | 292 |
G:=sub<GL(7,GF(337))| [336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,336,336,336,336,336,336],[209,0,0,0,0,0,0,0,45,45,158,0,0,45,0,0,45,0,45,45,158,0,0,113,292,292,0,292,0,45,0,45,45,158,0,0,113,292,292,0,292,0,0,292,0,0,113,292,292] >;
C2×C7⋊C12 in GAP, Magma, Sage, TeX
C_2\times C_7\rtimes C_{12}
% in TeX
G:=Group("C2xC7:C12");
// GroupNames label
G:=SmallGroup(168,10);
// by ID
G=gap.SmallGroup(168,10);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-7,60,3604,614]);
// Polycyclic
G:=Group<a,b,c|a^2=b^7=c^12=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C2×C7⋊C12 in TeX
Character table of C2×C7⋊C12 in TeX