Copied to
clipboard

G = Dic7⋊C6order 168 = 23·3·7

The semidirect product of Dic7 and C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: Dic7⋊C6, D142C6, C222F7, C7⋊C12⋊C2, C7⋊C32D4, C7⋊D4⋊C3, C72(C3×D4), (C2×C14)⋊3C6, (C2×F7)⋊2C2, C2.5(C2×F7), C14.5(C2×C6), (C22×C7⋊C3)⋊1C2, (C2×C7⋊C3).5C22, SmallGroup(168,11)

Series: Derived Chief Lower central Upper central

C1C14 — Dic7⋊C6
C1C7C14C2×C7⋊C3C2×F7 — Dic7⋊C6
C7C14 — Dic7⋊C6
C1C2C22

Generators and relations for Dic7⋊C6
 G = < a,b,c | a14=c6=1, b2=a7, bab-1=a-1, cac-1=a11, cbc-1=a7b >

2C2
14C2
7C3
7C22
7C4
7C6
14C6
14C6
2D7
2C14
7D4
7C2×C6
7C2×C6
7C12
2C2×C7⋊C3
2F7
7C3×D4

Character table of Dic7⋊C6

 class 12A2B2C3A3B46A6B6C6D6E6F712A12B14A14B14C
 size 112147714771414141461414666
ρ11111111111111111111    trivial
ρ2111-111-11111-1-11-1-1111    linear of order 2
ρ311-1-111111-1-1-1-1111-11-1    linear of order 2
ρ411-1111-111-1-1111-1-1-11-1    linear of order 2
ρ51111ζ3ζ321ζ3ζ32ζ3ζ32ζ32ζ31ζ3ζ32111    linear of order 3
ρ611-1-1ζ3ζ321ζ3ζ32ζ65ζ6ζ6ζ651ζ3ζ32-11-1    linear of order 6
ρ711-1-1ζ32ζ31ζ32ζ3ζ6ζ65ζ65ζ61ζ32ζ3-11-1    linear of order 6
ρ8111-1ζ3ζ32-1ζ3ζ32ζ3ζ32ζ6ζ651ζ65ζ6111    linear of order 6
ρ911-11ζ3ζ32-1ζ3ζ32ζ65ζ6ζ32ζ31ζ65ζ6-11-1    linear of order 6
ρ1011-11ζ32ζ3-1ζ32ζ3ζ6ζ65ζ3ζ321ζ6ζ65-11-1    linear of order 6
ρ11111-1ζ32ζ3-1ζ32ζ3ζ32ζ3ζ65ζ61ζ6ζ65111    linear of order 6
ρ121111ζ32ζ31ζ32ζ3ζ32ζ3ζ3ζ321ζ32ζ3111    linear of order 3
ρ132-200220-2-200002000-20    orthogonal lifted from D4
ρ142-200-1+-3-1--301--31+-300002000-20    complex lifted from C3×D4
ρ152-200-1--3-1+-301+-31--300002000-20    complex lifted from C3×D4
ρ166660000000000-100-1-1-1    orthogonal lifted from F7
ρ1766-60000000000-1001-11    orthogonal lifted from C2×F7
ρ186-600000000000-100--71-7    complex faithful
ρ196-600000000000-100-71--7    complex faithful

Permutation representations of Dic7⋊C6
On 28 points - transitive group 28T21
Generators in S28
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(1 22 8 15)(2 21 9 28)(3 20 10 27)(4 19 11 26)(5 18 12 25)(6 17 13 24)(7 16 14 23)
(2 10 12)(3 5 9)(4 14 6)(7 13 11)(15 22)(16 17 26 23 24 19)(18 21 20 25 28 27)

G:=sub<Sym(28)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,22,8,15)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23), (2,10,12)(3,5,9)(4,14,6)(7,13,11)(15,22)(16,17,26,23,24,19)(18,21,20,25,28,27)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,22,8,15)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23), (2,10,12)(3,5,9)(4,14,6)(7,13,11)(15,22)(16,17,26,23,24,19)(18,21,20,25,28,27) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28)], [(1,22,8,15),(2,21,9,28),(3,20,10,27),(4,19,11,26),(5,18,12,25),(6,17,13,24),(7,16,14,23)], [(2,10,12),(3,5,9),(4,14,6),(7,13,11),(15,22),(16,17,26,23,24,19),(18,21,20,25,28,27)]])

G:=TransitiveGroup(28,21);

On 28 points - transitive group 28T25
Generators in S28
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(1 23 8 16)(2 22 9 15)(3 21 10 28)(4 20 11 27)(5 19 12 26)(6 18 13 25)(7 17 14 24)
(1 23)(2 18 12 24 10 20)(3 27 9 25 5 17)(4 22 6 26 14 28)(7 21 11 15 13 19)(8 16)

G:=sub<Sym(28)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,23,8,16)(2,22,9,15)(3,21,10,28)(4,20,11,27)(5,19,12,26)(6,18,13,25)(7,17,14,24), (1,23)(2,18,12,24,10,20)(3,27,9,25,5,17)(4,22,6,26,14,28)(7,21,11,15,13,19)(8,16)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,23,8,16)(2,22,9,15)(3,21,10,28)(4,20,11,27)(5,19,12,26)(6,18,13,25)(7,17,14,24), (1,23)(2,18,12,24,10,20)(3,27,9,25,5,17)(4,22,6,26,14,28)(7,21,11,15,13,19)(8,16) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28)], [(1,23,8,16),(2,22,9,15),(3,21,10,28),(4,20,11,27),(5,19,12,26),(6,18,13,25),(7,17,14,24)], [(1,23),(2,18,12,24,10,20),(3,27,9,25,5,17),(4,22,6,26,14,28),(7,21,11,15,13,19),(8,16)]])

G:=TransitiveGroup(28,25);

Dic7⋊C6 is a maximal subgroup of   D286C6  D4×F7  D42F7
Dic7⋊C6 is a maximal quotient of   Dic7⋊C12  D14⋊C12  D4⋊F7  D4.F7  Q82F7  Q8.2F7  C23.2F7

Matrix representation of Dic7⋊C6 in GL6(𝔽337)

03360000
00336000
336212213000
000125124336
00033600
00003360
,
000100
000010
000001
33600000
03360000
00336000
,
100000
124336336000
010000
00033600
00021311
00003360

G:=sub<GL(6,GF(337))| [0,0,336,0,0,0,336,0,212,0,0,0,0,336,213,0,0,0,0,0,0,125,336,0,0,0,0,124,0,336,0,0,0,336,0,0],[0,0,0,336,0,0,0,0,0,0,336,0,0,0,0,0,0,336,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[1,124,0,0,0,0,0,336,1,0,0,0,0,336,0,0,0,0,0,0,0,336,213,0,0,0,0,0,1,336,0,0,0,0,1,0] >;

Dic7⋊C6 in GAP, Magma, Sage, TeX

{\rm Dic}_7\rtimes C_6
% in TeX

G:=Group("Dic7:C6");
// GroupNames label

G:=SmallGroup(168,11);
// by ID

G=gap.SmallGroup(168,11);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-7,141,3604,614]);
// Polycyclic

G:=Group<a,b,c|a^14=c^6=1,b^2=a^7,b*a*b^-1=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^7*b>;
// generators/relations

Export

Subgroup lattice of Dic7⋊C6 in TeX
Character table of Dic7⋊C6 in TeX

׿
×
𝔽