metabelian, supersoluble, monomial
Aliases: Dic7⋊C6, D14⋊2C6, C22⋊2F7, C7⋊C12⋊C2, C7⋊C3⋊2D4, C7⋊D4⋊C3, C7⋊2(C3×D4), (C2×C14)⋊3C6, (C2×F7)⋊2C2, C2.5(C2×F7), C14.5(C2×C6), (C22×C7⋊C3)⋊1C2, (C2×C7⋊C3).5C22, SmallGroup(168,11)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C2×C7⋊C3 — C2×F7 — Dic7⋊C6 |
Generators and relations for Dic7⋊C6
G = < a,b,c | a14=c6=1, b2=a7, bab-1=a-1, cac-1=a11, cbc-1=a7b >
Character table of Dic7⋊C6
class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 7 | 12A | 12B | 14A | 14B | 14C | |
size | 1 | 1 | 2 | 14 | 7 | 7 | 14 | 7 | 7 | 14 | 14 | 14 | 14 | 6 | 14 | 14 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | 1 | ζ3 | ζ32 | -1 | 1 | -1 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | 1 | ζ32 | ζ3 | -1 | 1 | -1 | linear of order 6 |
ρ8 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | ζ65 | ζ6 | 1 | 1 | 1 | linear of order 6 |
ρ9 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ32 | ζ3 | 1 | ζ65 | ζ6 | -1 | 1 | -1 | linear of order 6 |
ρ10 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ3 | ζ32 | 1 | ζ6 | ζ65 | -1 | 1 | -1 | linear of order 6 |
ρ11 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | ζ6 | ζ65 | 1 | 1 | 1 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | linear of order 3 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | complex lifted from C3×D4 |
ρ15 | 2 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | complex lifted from C3×D4 |
ρ16 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ17 | 6 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | orthogonal lifted from C2×F7 |
ρ18 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -√-7 | 1 | √-7 | complex faithful |
ρ19 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | √-7 | 1 | -√-7 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(1 22 8 15)(2 21 9 28)(3 20 10 27)(4 19 11 26)(5 18 12 25)(6 17 13 24)(7 16 14 23)
(2 10 12)(3 5 9)(4 14 6)(7 13 11)(15 22)(16 17 26 23 24 19)(18 21 20 25 28 27)
G:=sub<Sym(28)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,22,8,15)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23), (2,10,12)(3,5,9)(4,14,6)(7,13,11)(15,22)(16,17,26,23,24,19)(18,21,20,25,28,27)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,22,8,15)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23), (2,10,12)(3,5,9)(4,14,6)(7,13,11)(15,22)(16,17,26,23,24,19)(18,21,20,25,28,27) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28)], [(1,22,8,15),(2,21,9,28),(3,20,10,27),(4,19,11,26),(5,18,12,25),(6,17,13,24),(7,16,14,23)], [(2,10,12),(3,5,9),(4,14,6),(7,13,11),(15,22),(16,17,26,23,24,19),(18,21,20,25,28,27)]])
G:=TransitiveGroup(28,21);
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(1 23 8 16)(2 22 9 15)(3 21 10 28)(4 20 11 27)(5 19 12 26)(6 18 13 25)(7 17 14 24)
(1 23)(2 18 12 24 10 20)(3 27 9 25 5 17)(4 22 6 26 14 28)(7 21 11 15 13 19)(8 16)
G:=sub<Sym(28)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,23,8,16)(2,22,9,15)(3,21,10,28)(4,20,11,27)(5,19,12,26)(6,18,13,25)(7,17,14,24), (1,23)(2,18,12,24,10,20)(3,27,9,25,5,17)(4,22,6,26,14,28)(7,21,11,15,13,19)(8,16)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,23,8,16)(2,22,9,15)(3,21,10,28)(4,20,11,27)(5,19,12,26)(6,18,13,25)(7,17,14,24), (1,23)(2,18,12,24,10,20)(3,27,9,25,5,17)(4,22,6,26,14,28)(7,21,11,15,13,19)(8,16) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28)], [(1,23,8,16),(2,22,9,15),(3,21,10,28),(4,20,11,27),(5,19,12,26),(6,18,13,25),(7,17,14,24)], [(1,23),(2,18,12,24,10,20),(3,27,9,25,5,17),(4,22,6,26,14,28),(7,21,11,15,13,19),(8,16)]])
G:=TransitiveGroup(28,25);
Dic7⋊C6 is a maximal subgroup of
D28⋊6C6 D4×F7 D4⋊2F7
Dic7⋊C6 is a maximal quotient of Dic7⋊C12 D14⋊C12 D4⋊F7 D4.F7 Q8⋊2F7 Q8.2F7 C23.2F7
Matrix representation of Dic7⋊C6 ►in GL6(𝔽337)
0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 |
336 | 212 | 213 | 0 | 0 | 0 |
0 | 0 | 0 | 125 | 124 | 336 |
0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
336 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
124 | 336 | 336 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 213 | 1 | 1 |
0 | 0 | 0 | 0 | 336 | 0 |
G:=sub<GL(6,GF(337))| [0,0,336,0,0,0,336,0,212,0,0,0,0,336,213,0,0,0,0,0,0,125,336,0,0,0,0,124,0,336,0,0,0,336,0,0],[0,0,0,336,0,0,0,0,0,0,336,0,0,0,0,0,0,336,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[1,124,0,0,0,0,0,336,1,0,0,0,0,336,0,0,0,0,0,0,0,336,213,0,0,0,0,0,1,336,0,0,0,0,1,0] >;
Dic7⋊C6 in GAP, Magma, Sage, TeX
{\rm Dic}_7\rtimes C_6
% in TeX
G:=Group("Dic7:C6");
// GroupNames label
G:=SmallGroup(168,11);
// by ID
G=gap.SmallGroup(168,11);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-7,141,3604,614]);
// Polycyclic
G:=Group<a,b,c|a^14=c^6=1,b^2=a^7,b*a*b^-1=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^7*b>;
// generators/relations
Export
Subgroup lattice of Dic7⋊C6 in TeX
Character table of Dic7⋊C6 in TeX