Copied to
clipboard

G = C7⋊C12order 84 = 22·3·7

The semidirect product of C7 and C12 acting via C12/C2=C6

metacyclic, supersoluble, monomial, Z-group

Aliases: C7⋊C12, C2.F7, C14.C6, Dic7⋊C3, C7⋊C3⋊C4, (C2×C7⋊C3).C2, SmallGroup(84,1)

Series: Derived Chief Lower central Upper central

C1C7 — C7⋊C12
C1C7C14C2×C7⋊C3 — C7⋊C12
C7 — C7⋊C12
C1C2

Generators and relations for C7⋊C12
 G = < a,b | a7=b12=1, bab-1=a5 >

7C3
7C4
7C6
7C12

Character table of C7⋊C12

 class 123A3B4A4B6A6B712A12B12C12D14
 size 11777777677776
ρ111111111111111    trivial
ρ21111-1-1111-1-1-1-11    linear of order 2
ρ311ζ3ζ3211ζ32ζ31ζ32ζ3ζ32ζ31    linear of order 3
ρ411ζ32ζ311ζ3ζ321ζ3ζ32ζ3ζ321    linear of order 3
ρ511ζ32ζ3-1-1ζ3ζ321ζ65ζ6ζ65ζ61    linear of order 6
ρ611ζ3ζ32-1-1ζ32ζ31ζ6ζ65ζ6ζ651    linear of order 6
ρ71-111-ii-1-11-i-iii-1    linear of order 4
ρ81-111i-i-1-11ii-i-i-1    linear of order 4
ρ91-1ζ32ζ3i-iζ65ζ61ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32-1    linear of order 12
ρ101-1ζ32ζ3-iiζ65ζ61ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32-1    linear of order 12
ρ111-1ζ3ζ32i-iζ6ζ651ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3-1    linear of order 12
ρ121-1ζ3ζ32-iiζ6ζ651ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3-1    linear of order 12
ρ1366000000-10000-1    orthogonal lifted from F7
ρ146-6000000-100001    symplectic faithful, Schur index 2

Permutation representations of C7⋊C12
On 28 points - transitive group 28T12
Generators in S28
(1 5 13 26 9 18 22)(2 19 27 6 23 10 14)(3 11 7 20 15 24 28)(4 25 21 12 17 16 8)
(1 2 3 4)(5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)

G:=sub<Sym(28)| (1,5,13,26,9,18,22)(2,19,27,6,23,10,14)(3,11,7,20,15,24,28)(4,25,21,12,17,16,8), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)>;

G:=Group( (1,5,13,26,9,18,22)(2,19,27,6,23,10,14)(3,11,7,20,15,24,28)(4,25,21,12,17,16,8), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28) );

G=PermutationGroup([[(1,5,13,26,9,18,22),(2,19,27,6,23,10,14),(3,11,7,20,15,24,28),(4,25,21,12,17,16,8)], [(1,2,3,4),(5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28)]])

G:=TransitiveGroup(28,12);

C7⋊C12 is a maximal subgroup of
C4.F7  C4×F7  Dic7⋊C6  C6.F7  Q8.F7  Dic7⋊A4  C353C12  C35⋊C12
C7⋊C12 is a maximal quotient of
C7⋊C24  C7⋊C36  C6.F7  Dic7⋊A4  C353C12  C35⋊C12

Matrix representation of C7⋊C12 in GL6(𝔽3)

012000
200100
000202
012200
001000
022010
,
101001
100001
100000
001011
200201
112002

G:=sub<GL(6,GF(3))| [0,2,0,0,0,0,1,0,0,1,0,2,2,0,0,2,1,2,0,1,2,2,0,0,0,0,0,0,0,1,0,0,2,0,0,0],[1,1,1,0,2,1,0,0,0,0,0,1,1,0,0,1,0,2,0,0,0,0,2,0,0,0,0,1,0,0,1,1,0,1,1,2] >;

C7⋊C12 in GAP, Magma, Sage, TeX

C_7\rtimes C_{12}
% in TeX

G:=Group("C7:C12");
// GroupNames label

G:=SmallGroup(84,1);
// by ID

G=gap.SmallGroup(84,1);
# by ID

G:=PCGroup([4,-2,-3,-2,-7,24,1155,391]);
// Polycyclic

G:=Group<a,b|a^7=b^12=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C7⋊C12 in TeX
Character table of C7⋊C12 in TeX

׿
×
𝔽