Extensions 1→N→G→Q→1 with N=C6 and Q=D14

Direct product G=N×Q with N=C6 and Q=D14
dρLabelID
C2×C6×D784C2xC6xD7168,54

Semidirect products G=N:Q with N=C6 and Q=D14
extensionφ:Q→Aut NdρLabelID
C61D14 = C2×S3×D7φ: D14/D7C2 ⊆ Aut C6424+C6:1D14168,50
C62D14 = C22×D21φ: D14/C14C2 ⊆ Aut C684C6:2D14168,56

Non-split extensions G=N.Q with N=C6 and Q=D14
extensionφ:Q→Aut NdρLabelID
C6.1D14 = Dic3×D7φ: D14/D7C2 ⊆ Aut C6844-C6.1D14168,12
C6.2D14 = S3×Dic7φ: D14/D7C2 ⊆ Aut C6844-C6.2D14168,13
C6.3D14 = D21⋊C4φ: D14/D7C2 ⊆ Aut C6844+C6.3D14168,14
C6.4D14 = C21⋊D4φ: D14/D7C2 ⊆ Aut C6844-C6.4D14168,15
C6.5D14 = C3⋊D28φ: D14/D7C2 ⊆ Aut C6844+C6.5D14168,16
C6.6D14 = C7⋊D12φ: D14/D7C2 ⊆ Aut C6844+C6.6D14168,17
C6.7D14 = C21⋊Q8φ: D14/D7C2 ⊆ Aut C61684-C6.7D14168,18
C6.8D14 = Dic42φ: D14/C14C2 ⊆ Aut C61682-C6.8D14168,34
C6.9D14 = C4×D21φ: D14/C14C2 ⊆ Aut C6842C6.9D14168,35
C6.10D14 = D84φ: D14/C14C2 ⊆ Aut C6842+C6.10D14168,36
C6.11D14 = C2×Dic21φ: D14/C14C2 ⊆ Aut C6168C6.11D14168,37
C6.12D14 = C217D4φ: D14/C14C2 ⊆ Aut C6842C6.12D14168,38
C6.13D14 = C3×Dic14central extension (φ=1)1682C6.13D14168,24
C6.14D14 = C12×D7central extension (φ=1)842C6.14D14168,25
C6.15D14 = C3×D28central extension (φ=1)842C6.15D14168,26
C6.16D14 = C6×Dic7central extension (φ=1)168C6.16D14168,27
C6.17D14 = C3×C7⋊D4central extension (φ=1)842C6.17D14168,28

׿
×
𝔽