Copied to
clipboard

G = C3×S3×D5order 180 = 22·32·5

Direct product of C3, S3 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×S3×D5, D15⋊C6, C154D6, C323D10, (C5×S3)⋊C6, C15⋊(C2×C6), C51(S3×C6), (C3×D5)⋊C6, C31(C6×D5), (S3×C15)⋊2C2, (C3×D15)⋊1C2, (C3×C15)⋊1C22, (C32×D5)⋊1C2, SmallGroup(180,26)

Series: Derived Chief Lower central Upper central

C1C15 — C3×S3×D5
C1C5C15C3×C15C32×D5 — C3×S3×D5
C15 — C3×S3×D5
C1C3

Generators and relations for C3×S3×D5
 G = < a,b,c,d,e | a3=b3=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
5C2
15C2
2C3
15C22
3C6
5C6
5C6
5S3
10C6
15C6
3C10
3D5
2C15
5D6
15C2×C6
5C3×S3
5C3×C6
3D10
2C3×D5
3C3×D5
3C30
5S3×C6
3C6×D5

Permutation representations of C3×S3×D5
On 30 points - transitive group 30T44
Generators in S30
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)

G:=sub<Sym(30)| (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)>;

G:=Group( (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29) );

G=PermutationGroup([[(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29)]])

G:=TransitiveGroup(30,44);

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E5A5B6A6B6C6D6E6F6G6H6I10A10B15A15B15C15D15E···15J30A30B30C30D
order1222333335566666666610101515151515···1530303030
size135151122222335510101015156622224···46666

36 irreducible representations

dim111111112222222244
type+++++++++
imageC1C2C2C2C3C6C6C6S3D5D6C3×S3D10C3×D5S3×C6C6×D5S3×D5C3×S3×D5
kernelC3×S3×D5C32×D5S3×C15C3×D15S3×D5C5×S3C3×D5D15C3×D5C3×S3C15D5C32S3C5C3C3C1
# reps111122221212242424

Matrix representation of C3×S3×D5 in GL4(𝔽31) generated by

5000
0500
0010
0001
,
5000
02500
0010
0001
,
0100
1000
0010
0001
,
1000
0100
00121
00300
,
1000
0100
00112
00030
G:=sub<GL(4,GF(31))| [5,0,0,0,0,5,0,0,0,0,1,0,0,0,0,1],[5,0,0,0,0,25,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,30,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,12,30] >;

C3×S3×D5 in GAP, Magma, Sage, TeX

C_3\times S_3\times D_5
% in TeX

G:=Group("C3xS3xD5");
// GroupNames label

G:=SmallGroup(180,26);
// by ID

G=gap.SmallGroup(180,26);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-5,248,3604]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3×S3×D5 in TeX

׿
×
𝔽