Copied to
clipboard

G = C3xS3xD5order 180 = 22·32·5

Direct product of C3, S3 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3xS3xD5, D15:C6, C15:4D6, C32:3D10, (C5xS3):C6, C15:(C2xC6), C5:1(S3xC6), (C3xD5):C6, C3:1(C6xD5), (S3xC15):2C2, (C3xD15):1C2, (C3xC15):1C22, (C32xD5):1C2, SmallGroup(180,26)

Series: Derived Chief Lower central Upper central

C1C15 — C3xS3xD5
C1C5C15C3xC15C32xD5 — C3xS3xD5
C15 — C3xS3xD5
C1C3

Generators and relations for C3xS3xD5
 G = < a,b,c,d,e | a3=b3=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 160 in 44 conjugacy classes, 20 normal (all characteristic)
Quotients: C1, C2, C3, C22, S3, C6, D5, D6, C2xC6, C3xS3, D10, C3xD5, S3xC6, S3xD5, C6xD5, C3xS3xD5
3C2
5C2
15C2
2C3
15C22
3C6
5C6
5C6
5S3
10C6
15C6
3C10
3D5
2C15
5D6
15C2xC6
5C3xS3
5C3xC6
3D10
2C3xD5
3C3xD5
3C30
5S3xC6
3C6xD5

Permutation representations of C3xS3xD5
On 30 points - transitive group 30T44
Generators in S30
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)

G:=sub<Sym(30)| (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)>;

G:=Group( (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29) );

G=PermutationGroup([[(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29)]])

G:=TransitiveGroup(30,44);

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E5A5B6A6B6C6D6E6F6G6H6I10A10B15A15B15C15D15E···15J30A30B30C30D
order1222333335566666666610101515151515···1530303030
size135151122222335510101015156622224···46666

36 irreducible representations

dim111111112222222244
type+++++++++
imageC1C2C2C2C3C6C6C6S3D5D6C3xS3D10C3xD5S3xC6C6xD5S3xD5C3xS3xD5
kernelC3xS3xD5C32xD5S3xC15C3xD15S3xD5C5xS3C3xD5D15C3xD5C3xS3C15D5C32S3C5C3C3C1
# reps111122221212242424

Matrix representation of C3xS3xD5 in GL4(F31) generated by

5000
0500
0010
0001
,
5000
02500
0010
0001
,
0100
1000
0010
0001
,
1000
0100
00121
00300
,
1000
0100
00112
00030
G:=sub<GL(4,GF(31))| [5,0,0,0,0,5,0,0,0,0,1,0,0,0,0,1],[5,0,0,0,0,25,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,30,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,12,30] >;

C3xS3xD5 in GAP, Magma, Sage, TeX

C_3\times S_3\times D_5
% in TeX

G:=Group("C3xS3xD5");
// GroupNames label

G:=SmallGroup(180,26);
// by ID

G=gap.SmallGroup(180,26);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-5,248,3604]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3xS3xD5 in TeX

׿
x
:
Z
F
o
wr
Q
<