direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D5×D9, D45⋊C2, C9⋊1D10, C5⋊1D18, C45⋊C22, C15.D6, (C5×D9)⋊C2, (C9×D5)⋊C2, C3.(S3×D5), (C3×D5).1S3, SmallGroup(180,7)
Series: Derived ►Chief ►Lower central ►Upper central
C45 — D5×D9 |
Generators and relations for D5×D9
G = < a,b,c,d | a5=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of D5×D9
class | 1 | 2A | 2B | 2C | 3 | 5A | 5B | 6 | 9A | 9B | 9C | 10A | 10B | 15A | 15B | 18A | 18B | 18C | 45A | 45B | 45C | 45D | 45E | 45F | |
size | 1 | 5 | 9 | 45 | 2 | 2 | 2 | 10 | 2 | 2 | 2 | 18 | 18 | 4 | 4 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ7 | 2 | 0 | -2 | 0 | 2 | -1-√5/2 | -1+√5/2 | 0 | 2 | 2 | 2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 0 | 2 | 0 | 2 | -1-√5/2 | -1+√5/2 | 0 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 0 | 2 | 0 | 2 | -1+√5/2 | -1-√5/2 | 0 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 0 | -2 | 0 | 2 | -1+√5/2 | -1-√5/2 | 0 | 2 | 2 | 2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 0 | 0 | -1 | -1 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D18 |
ρ12 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 0 | 0 | -1 | -1 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D18 |
ρ13 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 0 | 0 | -1 | -1 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D18 |
ρ14 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 0 | 0 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ15 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 0 | 0 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ16 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 0 | 0 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ17 | 4 | 0 | 0 | 0 | 4 | -1-√5 | -1+√5 | 0 | -2 | -2 | -2 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from S3×D5 |
ρ18 | 4 | 0 | 0 | 0 | 4 | -1+√5 | -1-√5 | 0 | -2 | -2 | -2 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from S3×D5 |
ρ19 | 4 | 0 | 0 | 0 | -2 | -1-√5 | -1+√5 | 0 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | ζ95ζ54+ζ95ζ5+ζ94ζ54+ζ94ζ5 | ζ98ζ53+ζ98ζ52+ζ9ζ53+ζ9ζ52 | ζ98ζ54+ζ98ζ5+ζ9ζ54+ζ9ζ5 | ζ97ζ54+ζ97ζ5+ζ92ζ54+ζ92ζ5 | ζ95ζ53+ζ95ζ52+ζ94ζ53+ζ94ζ52 | ζ97ζ53+ζ97ζ52+ζ92ζ53+ζ92ζ52 | orthogonal faithful |
ρ20 | 4 | 0 | 0 | 0 | -2 | -1+√5 | -1-√5 | 0 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | ζ95ζ53+ζ95ζ52+ζ94ζ53+ζ94ζ52 | ζ98ζ54+ζ98ζ5+ζ9ζ54+ζ9ζ5 | ζ98ζ53+ζ98ζ52+ζ9ζ53+ζ9ζ52 | ζ97ζ53+ζ97ζ52+ζ92ζ53+ζ92ζ52 | ζ95ζ54+ζ95ζ5+ζ94ζ54+ζ94ζ5 | ζ97ζ54+ζ97ζ5+ζ92ζ54+ζ92ζ5 | orthogonal faithful |
ρ21 | 4 | 0 | 0 | 0 | -2 | -1+√5 | -1-√5 | 0 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | ζ97ζ53+ζ97ζ52+ζ92ζ53+ζ92ζ52 | ζ95ζ54+ζ95ζ5+ζ94ζ54+ζ94ζ5 | ζ95ζ53+ζ95ζ52+ζ94ζ53+ζ94ζ52 | ζ98ζ53+ζ98ζ52+ζ9ζ53+ζ9ζ52 | ζ97ζ54+ζ97ζ5+ζ92ζ54+ζ92ζ5 | ζ98ζ54+ζ98ζ5+ζ9ζ54+ζ9ζ5 | orthogonal faithful |
ρ22 | 4 | 0 | 0 | 0 | -2 | -1+√5 | -1-√5 | 0 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | ζ98ζ53+ζ98ζ52+ζ9ζ53+ζ9ζ52 | ζ97ζ54+ζ97ζ5+ζ92ζ54+ζ92ζ5 | ζ97ζ53+ζ97ζ52+ζ92ζ53+ζ92ζ52 | ζ95ζ53+ζ95ζ52+ζ94ζ53+ζ94ζ52 | ζ98ζ54+ζ98ζ5+ζ9ζ54+ζ9ζ5 | ζ95ζ54+ζ95ζ5+ζ94ζ54+ζ94ζ5 | orthogonal faithful |
ρ23 | 4 | 0 | 0 | 0 | -2 | -1-√5 | -1+√5 | 0 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | ζ98ζ54+ζ98ζ5+ζ9ζ54+ζ9ζ5 | ζ97ζ53+ζ97ζ52+ζ92ζ53+ζ92ζ52 | ζ97ζ54+ζ97ζ5+ζ92ζ54+ζ92ζ5 | ζ95ζ54+ζ95ζ5+ζ94ζ54+ζ94ζ5 | ζ98ζ53+ζ98ζ52+ζ9ζ53+ζ9ζ52 | ζ95ζ53+ζ95ζ52+ζ94ζ53+ζ94ζ52 | orthogonal faithful |
ρ24 | 4 | 0 | 0 | 0 | -2 | -1-√5 | -1+√5 | 0 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | ζ97ζ54+ζ97ζ5+ζ92ζ54+ζ92ζ5 | ζ95ζ53+ζ95ζ52+ζ94ζ53+ζ94ζ52 | ζ95ζ54+ζ95ζ5+ζ94ζ54+ζ94ζ5 | ζ98ζ54+ζ98ζ5+ζ9ζ54+ζ9ζ5 | ζ97ζ53+ζ97ζ52+ζ92ζ53+ζ92ζ52 | ζ98ζ53+ζ98ζ52+ζ9ζ53+ζ9ζ52 | orthogonal faithful |
(1 28 40 23 14)(2 29 41 24 15)(3 30 42 25 16)(4 31 43 26 17)(5 32 44 27 18)(6 33 45 19 10)(7 34 37 20 11)(8 35 38 21 12)(9 36 39 22 13)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 33)(20 34)(21 35)(22 36)(23 28)(24 29)(25 30)(26 31)(27 32)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 36)(29 35)(30 34)(31 33)(37 42)(38 41)(39 40)(43 45)
G:=sub<Sym(45)| (1,28,40,23,14)(2,29,41,24,15)(3,30,42,25,16)(4,31,43,26,17)(5,32,44,27,18)(6,33,45,19,10)(7,34,37,20,11)(8,35,38,21,12)(9,36,39,22,13), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45)>;
G:=Group( (1,28,40,23,14)(2,29,41,24,15)(3,30,42,25,16)(4,31,43,26,17)(5,32,44,27,18)(6,33,45,19,10)(7,34,37,20,11)(8,35,38,21,12)(9,36,39,22,13), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45) );
G=PermutationGroup([[(1,28,40,23,14),(2,29,41,24,15),(3,30,42,25,16),(4,31,43,26,17),(5,32,44,27,18),(6,33,45,19,10),(7,34,37,20,11),(8,35,38,21,12),(9,36,39,22,13)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,33),(20,34),(21,35),(22,36),(23,28),(24,29),(25,30),(26,31),(27,32)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,36),(29,35),(30,34),(31,33),(37,42),(38,41),(39,40),(43,45)]])
D5×D9 is a maximal quotient of C45⋊Q8 D90.C2 C5⋊D36 C45⋊D4 C9⋊D20
Matrix representation of D5×D9 ►in GL4(𝔽181) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 180 | 1 |
0 | 0 | 166 | 14 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 180 | 0 |
0 | 0 | 166 | 1 |
50 | 177 | 0 | 0 |
4 | 54 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
50 | 54 | 0 | 0 |
4 | 131 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(181))| [1,0,0,0,0,1,0,0,0,0,180,166,0,0,1,14],[1,0,0,0,0,1,0,0,0,0,180,166,0,0,0,1],[50,4,0,0,177,54,0,0,0,0,1,0,0,0,0,1],[50,4,0,0,54,131,0,0,0,0,1,0,0,0,0,1] >;
D5×D9 in GAP, Magma, Sage, TeX
D_5\times D_9
% in TeX
G:=Group("D5xD9");
// GroupNames label
G:=SmallGroup(180,7);
// by ID
G=gap.SmallGroup(180,7);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,-3,517,462,963,1509]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D5×D9 in TeX
Character table of D5×D9 in TeX