Copied to
clipboard

G = D9×F5order 360 = 23·32·5

Direct product of D9 and F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D9×F5, D45⋊C4, D5.1D18, C5⋊(C4×D9), C9⋊F5⋊C2, C45⋊(C2×C4), (C5×D9)⋊C4, (C9×F5)⋊C2, C91(C2×F5), C3.(S3×F5), C15.(C4×S3), (D5×D9).C2, (C3×F5).S3, (C3×D5).1D6, (C9×D5).C22, SmallGroup(360,39)

Series: Derived Chief Lower central Upper central

C1C45 — D9×F5
C1C3C15C45C9×D5C9×F5 — D9×F5
C45 — D9×F5
C1

Generators and relations for D9×F5
 G = < a,b,c,d | a9=b2=c5=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

5C2
9C2
45C2
5C4
45C22
45C4
3S3
5C6
15S3
9D5
9C10
45C2×C4
5C12
15Dic3
15D6
5D9
5C18
9D10
9F5
3D15
3C5×S3
15C4×S3
5D18
5Dic9
5C36
9C2×F5
3S3×D5
3C3⋊F5
5C4×D9
3S3×F5

Character table of D9×F5

 class 12A2B2C34A4B4C4D569A9B9C1012A12B1518A18B18C36A36B36C36D36E36F45A45B45C
 size 1594525545454102223610108101010101010101010888
ρ1111111111111111111111111111111    trivial
ρ211-1-11-1-11111111-1-1-11111-1-1-1-1-1-1111    linear of order 2
ρ311111-1-1-1-1111111-1-11111-1-1-1-1-1-1111    linear of order 2
ρ411-1-1111-1-111111-1111111111111111    linear of order 2
ρ51-11-11-ii-ii1-11111-ii1-1-1-1i-i-i-iii111    linear of order 4
ρ61-1-111-iii-i1-1111-1-ii1-1-1-1i-i-i-iii111    linear of order 4
ρ71-1-111i-i-ii1-1111-1i-i1-1-1-1-iiii-i-i111    linear of order 4
ρ81-11-11i-ii-i1-11111i-i1-1-1-1-iiii-i-i111    linear of order 4
ρ922002-2-20022-1-1-10-2-22-1-1-1111111-1-1-1    orthogonal lifted from D6
ρ1022002220022-1-1-10222-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ112200-122002-1ζ989ζ9792ζ95940-1-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ9792ζ989ζ9594    orthogonal lifted from D9
ρ122200-1-2-2002-1ζ9594ζ989ζ9792011-1ζ9594ζ989ζ97929594989979295949899792ζ989ζ9594ζ9792    orthogonal lifted from D18
ρ132200-1-2-2002-1ζ9792ζ9594ζ989011-1ζ9792ζ9594ζ9899792959498997929594989ζ9594ζ9792ζ989    orthogonal lifted from D18
ρ142200-122002-1ζ9594ζ989ζ97920-1-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ989ζ9594ζ9792    orthogonal lifted from D9
ρ152200-1-2-2002-1ζ989ζ9792ζ9594011-1ζ989ζ9792ζ95949899792959498997929594ζ9792ζ989ζ9594    orthogonal lifted from D18
ρ162200-122002-1ζ9792ζ9594ζ9890-1-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9594ζ9792ζ989    orthogonal lifted from D9
ρ172-2002-2i2i002-2-1-1-10-2i2i2111-iiii-i-i-1-1-1    complex lifted from C4×S3
ρ182-20022i-2i002-2-1-1-102i-2i2111i-i-i-iii-1-1-1    complex lifted from C4×S3
ρ192-200-1-2i2i0021ζ989ζ9792ζ95940i-i-198997929594ζ4ζ984ζ9ζ43ζ9743ζ92ζ43ζ9543ζ94ζ43ζ9843ζ9ζ4ζ974ζ92ζ4ζ954ζ94ζ9792ζ989ζ9594    complex lifted from C4×D9
ρ202-200-12i-2i0021ζ9792ζ9594ζ9890-ii-197929594989ζ43ζ9743ζ92ζ4ζ954ζ94ζ4ζ984ζ9ζ4ζ974ζ92ζ43ζ9543ζ94ζ43ζ9843ζ9ζ9594ζ9792ζ989    complex lifted from C4×D9
ρ212-200-12i-2i0021ζ9594ζ989ζ97920-ii-195949899792ζ43ζ9543ζ94ζ4ζ984ζ9ζ4ζ974ζ92ζ4ζ954ζ94ζ43ζ9843ζ9ζ43ζ9743ζ92ζ989ζ9594ζ9792    complex lifted from C4×D9
ρ222-200-12i-2i0021ζ989ζ9792ζ95940-ii-198997929594ζ43ζ9843ζ9ζ4ζ974ζ92ζ4ζ954ζ94ζ4ζ984ζ9ζ43ζ9743ζ92ζ43ζ9543ζ94ζ9792ζ989ζ9594    complex lifted from C4×D9
ρ232-200-1-2i2i0021ζ9792ζ9594ζ9890i-i-197929594989ζ4ζ974ζ92ζ43ζ9543ζ94ζ43ζ9843ζ9ζ43ζ9743ζ92ζ4ζ954ζ94ζ4ζ984ζ9ζ9594ζ9792ζ989    complex lifted from C4×D9
ρ242-200-1-2i2i0021ζ9594ζ989ζ97920i-i-195949899792ζ4ζ954ζ94ζ43ζ9843ζ9ζ43ζ9743ζ92ζ43ζ9543ζ94ζ4ζ984ζ9ζ4ζ974ζ92ζ989ζ9594ζ9792    complex lifted from C4×D9
ρ2540-4040000-10444100-1000000000-1-1-1    orthogonal lifted from C2×F5
ρ26404040000-10444-100-1000000000-1-1-1    orthogonal lifted from F5
ρ27800080000-20-4-4-4000-2000000000111    orthogonal lifted from S3×F5
ρ288000-40000-2098+4ζ997+4ζ9295+4ζ94000100000000097929899594    orthogonal faithful
ρ298000-40000-2097+4ζ9295+4ζ9498+4ζ9000100000000095949792989    orthogonal faithful
ρ308000-40000-2095+4ζ9498+4ζ997+4ζ92000100000000098995949792    orthogonal faithful

Smallest permutation representation of D9×F5
On 45 points
Generators in S45
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(1 9)(2 8)(3 7)(4 6)(10 15)(11 14)(12 13)(16 18)(19 26)(20 25)(21 24)(22 23)(28 36)(29 35)(30 34)(31 33)(37 42)(38 41)(39 40)(43 45)
(1 13 23 40 28)(2 14 24 41 29)(3 15 25 42 30)(4 16 26 43 31)(5 17 27 44 32)(6 18 19 45 33)(7 10 20 37 34)(8 11 21 38 35)(9 12 22 39 36)
(10 20 34 37)(11 21 35 38)(12 22 36 39)(13 23 28 40)(14 24 29 41)(15 25 30 42)(16 26 31 43)(17 27 32 44)(18 19 33 45)

G:=sub<Sym(45)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,15)(11,14)(12,13)(16,18)(19,26)(20,25)(21,24)(22,23)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45), (1,13,23,40,28)(2,14,24,41,29)(3,15,25,42,30)(4,16,26,43,31)(5,17,27,44,32)(6,18,19,45,33)(7,10,20,37,34)(8,11,21,38,35)(9,12,22,39,36), (10,20,34,37)(11,21,35,38)(12,22,36,39)(13,23,28,40)(14,24,29,41)(15,25,30,42)(16,26,31,43)(17,27,32,44)(18,19,33,45)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,15)(11,14)(12,13)(16,18)(19,26)(20,25)(21,24)(22,23)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45), (1,13,23,40,28)(2,14,24,41,29)(3,15,25,42,30)(4,16,26,43,31)(5,17,27,44,32)(6,18,19,45,33)(7,10,20,37,34)(8,11,21,38,35)(9,12,22,39,36), (10,20,34,37)(11,21,35,38)(12,22,36,39)(13,23,28,40)(14,24,29,41)(15,25,30,42)(16,26,31,43)(17,27,32,44)(18,19,33,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(1,9),(2,8),(3,7),(4,6),(10,15),(11,14),(12,13),(16,18),(19,26),(20,25),(21,24),(22,23),(28,36),(29,35),(30,34),(31,33),(37,42),(38,41),(39,40),(43,45)], [(1,13,23,40,28),(2,14,24,41,29),(3,15,25,42,30),(4,16,26,43,31),(5,17,27,44,32),(6,18,19,45,33),(7,10,20,37,34),(8,11,21,38,35),(9,12,22,39,36)], [(10,20,34,37),(11,21,35,38),(12,22,36,39),(13,23,28,40),(14,24,29,41),(15,25,30,42),(16,26,31,43),(17,27,32,44),(18,19,33,45)]])

Matrix representation of D9×F5 in GL6(𝔽181)

131540000
12740000
001000
000100
000010
000001
,
177540000
5040000
001000
000100
000010
000001
,
100000
010000
00000180
00100180
00010180
00001180
,
1900000
0190000
000010
001000
000001
000100

G:=sub<GL(6,GF(181))| [131,127,0,0,0,0,54,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[177,50,0,0,0,0,54,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,180,180,180,180],[19,0,0,0,0,0,0,19,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

D9×F5 in GAP, Magma, Sage, TeX

D_9\times F_5
% in TeX

G:=Group("D9xF5");
// GroupNames label

G:=SmallGroup(360,39);
// by ID

G=gap.SmallGroup(360,39);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-5,-3,24,1641,741,1444,736,4331]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^5=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of D9×F5 in TeX
Character table of D9×F5 in TeX

׿
×
𝔽