Extensions 1→N→G→Q→1 with N=C4×C7⋊C3 and Q=C2

Direct product G=N×Q with N=C4×C7⋊C3 and Q=C2
dρLabelID
C2×C4×C7⋊C356C2xC4xC7:C3168,19

Semidirect products G=N:Q with N=C4×C7⋊C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C7⋊C3)⋊1C2 = C4⋊F7φ: C2/C1C2 ⊆ Out C4×C7⋊C3286+(C4xC7:C3):1C2168,9
(C4×C7⋊C3)⋊2C2 = C4×F7φ: C2/C1C2 ⊆ Out C4×C7⋊C3286(C4xC7:C3):2C2168,8
(C4×C7⋊C3)⋊3C2 = D4×C7⋊C3φ: C2/C1C2 ⊆ Out C4×C7⋊C3286(C4xC7:C3):3C2168,20

Non-split extensions G=N.Q with N=C4×C7⋊C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C7⋊C3).1C2 = C4.F7φ: C2/C1C2 ⊆ Out C4×C7⋊C3566-(C4xC7:C3).1C2168,7
(C4×C7⋊C3).2C2 = C7⋊C24φ: C2/C1C2 ⊆ Out C4×C7⋊C3566(C4xC7:C3).2C2168,1
(C4×C7⋊C3).3C2 = Q8×C7⋊C3φ: C2/C1C2 ⊆ Out C4×C7⋊C3566(C4xC7:C3).3C2168,21
(C4×C7⋊C3).4C2 = C8×C7⋊C3φ: trivial image563(C4xC7:C3).4C2168,2

׿
×
𝔽