Copied to
clipboard

G = C4.F7order 168 = 23·3·7

The non-split extension by C4 of F7 acting via F7/C7⋊C3=C2

metacyclic, supersoluble, monomial

Aliases: C4.F7, Dic14⋊C3, C28.1C6, Dic7.C6, C7⋊C3⋊Q8, C7⋊(C3×Q8), C7⋊C12.C2, C2.3(C2×F7), C14.1(C2×C6), (C4×C7⋊C3).1C2, (C2×C7⋊C3).1C22, SmallGroup(168,7)

Series: Derived Chief Lower central Upper central

C1C14 — C4.F7
C1C7C14C2×C7⋊C3C7⋊C12 — C4.F7
C7C14 — C4.F7
C1C2C4

Generators and relations for C4.F7
 G = < a,b,c | a4=b7=1, c6=a2, ab=ba, cac-1=a-1, cbc-1=b5 >

7C3
7C4
7C4
7C6
7Q8
7C12
7C12
7C12
7C3×Q8

Character table of C4.F7

 class 123A3B4A4B4C6A6B712A12B12C12D12E12F1428A28B
 size 117721414776141414141414666
ρ11111111111111111111    trivial
ρ21111-1-11111-111-1-1-11-1-1    linear of order 2
ρ311111-1-1111-1-1-11-11111    linear of order 2
ρ41111-11-11111-1-1-11-11-1-1    linear of order 2
ρ511ζ32ζ3-11-1ζ32ζ31ζ32ζ65ζ6ζ6ζ3ζ651-1-1    linear of order 6
ρ611ζ3ζ32-11-1ζ3ζ321ζ3ζ6ζ65ζ65ζ32ζ61-1-1    linear of order 6
ρ711ζ32ζ3111ζ32ζ31ζ32ζ3ζ32ζ32ζ3ζ3111    linear of order 3
ρ811ζ3ζ32111ζ3ζ321ζ3ζ32ζ3ζ3ζ32ζ32111    linear of order 3
ρ911ζ3ζ32-1-11ζ3ζ321ζ65ζ32ζ3ζ65ζ6ζ61-1-1    linear of order 6
ρ1011ζ32ζ3-1-11ζ32ζ31ζ6ζ3ζ32ζ6ζ65ζ651-1-1    linear of order 6
ρ1111ζ32ζ31-1-1ζ32ζ31ζ6ζ65ζ6ζ32ζ65ζ3111    linear of order 6
ρ1211ζ3ζ321-1-1ζ3ζ321ζ65ζ6ζ65ζ3ζ6ζ32111    linear of order 6
ρ132-222000-2-22000000-200    symplectic lifted from Q8, Schur index 2
ρ142-2-1+-3-1--30001--31+-32000000-200    complex lifted from C3×Q8
ρ152-2-1--3-1+-30001+-31--32000000-200    complex lifted from C3×Q8
ρ166600-60000-1000000-111    orthogonal lifted from C2×F7
ρ17660060000-1000000-1-1-1    orthogonal lifted from F7
ρ186-60000000-10000001-77    symplectic faithful, Schur index 2
ρ196-60000000-100000017-7    symplectic faithful, Schur index 2

Smallest permutation representation of C4.F7
On 56 points
Generators in S56
(1 8 3 6)(2 7 4 5)(9 50 15 56)(10 45 16 51)(11 52 17 46)(12 47 18 53)(13 54 19 48)(14 49 20 55)(21 40 27 34)(22 35 28 41)(23 42 29 36)(24 37 30 43)(25 44 31 38)(26 39 32 33)
(1 30 26 45 22 49 53)(2 50 46 31 54 23 27)(3 24 32 51 28 55 47)(4 56 52 25 48 29 21)(5 9 17 44 13 36 40)(6 37 33 10 41 14 18)(7 15 11 38 19 42 34)(8 43 39 16 35 20 12)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56)

G:=sub<Sym(56)| (1,8,3,6)(2,7,4,5)(9,50,15,56)(10,45,16,51)(11,52,17,46)(12,47,18,53)(13,54,19,48)(14,49,20,55)(21,40,27,34)(22,35,28,41)(23,42,29,36)(24,37,30,43)(25,44,31,38)(26,39,32,33), (1,30,26,45,22,49,53)(2,50,46,31,54,23,27)(3,24,32,51,28,55,47)(4,56,52,25,48,29,21)(5,9,17,44,13,36,40)(6,37,33,10,41,14,18)(7,15,11,38,19,42,34)(8,43,39,16,35,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56)>;

G:=Group( (1,8,3,6)(2,7,4,5)(9,50,15,56)(10,45,16,51)(11,52,17,46)(12,47,18,53)(13,54,19,48)(14,49,20,55)(21,40,27,34)(22,35,28,41)(23,42,29,36)(24,37,30,43)(25,44,31,38)(26,39,32,33), (1,30,26,45,22,49,53)(2,50,46,31,54,23,27)(3,24,32,51,28,55,47)(4,56,52,25,48,29,21)(5,9,17,44,13,36,40)(6,37,33,10,41,14,18)(7,15,11,38,19,42,34)(8,43,39,16,35,20,12), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56) );

G=PermutationGroup([[(1,8,3,6),(2,7,4,5),(9,50,15,56),(10,45,16,51),(11,52,17,46),(12,47,18,53),(13,54,19,48),(14,49,20,55),(21,40,27,34),(22,35,28,41),(23,42,29,36),(24,37,30,43),(25,44,31,38),(26,39,32,33)], [(1,30,26,45,22,49,53),(2,50,46,31,54,23,27),(3,24,32,51,28,55,47),(4,56,52,25,48,29,21),(5,9,17,44,13,36,40),(6,37,33,10,41,14,18),(7,15,11,38,19,42,34),(8,43,39,16,35,20,12)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56)]])

C4.F7 is a maximal subgroup of   C56⋊C6  C8.F7  D4.F7  Q8.2F7  D286C6  D42F7  Q8×F7
C4.F7 is a maximal quotient of   Dic7⋊C12  C28⋊C12

Matrix representation of C4.F7 in GL6(𝔽3)

200001
012002
222001
200122
200220
100001
,
020010
000200
022121
022210
022201
211201
,
010120
020120
010101
120121
100011
001222

G:=sub<GL(6,GF(3))| [2,0,2,2,2,1,0,1,2,0,0,0,0,2,2,0,0,0,0,0,0,1,2,0,0,0,0,2,2,0,1,2,1,2,0,1],[0,0,0,0,0,2,2,0,2,2,2,1,0,0,2,2,2,1,0,2,1,2,2,2,1,0,2,1,0,0,0,0,1,0,1,1],[0,0,0,1,1,0,1,2,1,2,0,0,0,0,0,0,0,1,1,1,1,1,0,2,2,2,0,2,1,2,0,0,1,1,1,2] >;

C4.F7 in GAP, Magma, Sage, TeX

C_4.F_7
% in TeX

G:=Group("C4.F7");
// GroupNames label

G:=SmallGroup(168,7);
// by ID

G=gap.SmallGroup(168,7);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-7,60,141,66,3604,614]);
// Polycyclic

G:=Group<a,b,c|a^4=b^7=1,c^6=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C4.F7 in TeX
Character table of C4.F7 in TeX

׿
×
𝔽