Copied to
clipboard

G = C7⋊C24order 168 = 23·3·7

The semidirect product of C7 and C24 acting via C24/C4=C6

metacyclic, supersoluble, monomial, Z-group

Aliases: C7⋊C24, C14.C12, C4.2F7, C28.2C6, C7⋊C8⋊C3, C7⋊C3⋊C8, C2.(C7⋊C12), (C2×C7⋊C3).C4, (C4×C7⋊C3).2C2, SmallGroup(168,1)

Series: Derived Chief Lower central Upper central

C1C7 — C7⋊C24
C1C7C14C28C4×C7⋊C3 — C7⋊C24
C7 — C7⋊C24
C1C4

Generators and relations for C7⋊C24
 G = < a,b | a7=b24=1, bab-1=a3 >

7C3
7C6
7C8
7C12
7C24

Character table of C7⋊C24

 class 123A3B4A4B6A6B78A8B8C8D12A12B12C12D1424A24B24C24D24E24F24G24H28A28B
 size 1177117767777777767777777766
ρ11111111111111111111111111111    trivial
ρ2111111111-1-1-1-111111-1-1-1-1-1-1-1-111    linear of order 2
ρ311ζ3ζ3211ζ32ζ311111ζ3ζ32ζ3ζ321ζ3ζ32ζ32ζ32ζ32ζ3ζ3ζ311    linear of order 3
ρ411ζ32ζ311ζ3ζ321-1-1-1-1ζ32ζ3ζ32ζ31ζ6ζ65ζ65ζ65ζ65ζ6ζ6ζ611    linear of order 6
ρ511ζ3ζ3211ζ32ζ31-1-1-1-1ζ3ζ32ζ3ζ321ζ65ζ6ζ6ζ6ζ6ζ65ζ65ζ6511    linear of order 6
ρ611ζ32ζ311ζ3ζ3211111ζ32ζ3ζ32ζ31ζ32ζ3ζ3ζ3ζ3ζ32ζ32ζ3211    linear of order 3
ρ71111-1-1111-iii-i-1-1-1-11-iii-i-iii-i-1-1    linear of order 4
ρ81111-1-1111i-i-ii-1-1-1-11i-i-iii-i-ii-1-1    linear of order 4
ρ91-111i-i-1-11ζ8ζ87ζ83ζ85-i-iii-1ζ8ζ87ζ83ζ85ζ8ζ87ζ83ζ85i-i    linear of order 8
ρ101-111-ii-1-11ζ83ζ85ζ8ζ87ii-i-i-1ζ83ζ85ζ8ζ87ζ83ζ85ζ8ζ87-ii    linear of order 8
ρ111-111-ii-1-11ζ87ζ8ζ85ζ83ii-i-i-1ζ87ζ8ζ85ζ83ζ87ζ8ζ85ζ83-ii    linear of order 8
ρ121-111i-i-1-11ζ85ζ83ζ87ζ8-i-iii-1ζ85ζ83ζ87ζ8ζ85ζ83ζ87ζ8i-i    linear of order 8
ρ1311ζ32ζ3-1-1ζ3ζ321-iii-iζ6ζ65ζ6ζ651ζ43ζ32ζ4ζ3ζ4ζ3ζ43ζ3ζ43ζ3ζ4ζ32ζ4ζ32ζ43ζ32-1-1    linear of order 12
ρ1411ζ32ζ3-1-1ζ3ζ321i-i-iiζ6ζ65ζ6ζ651ζ4ζ32ζ43ζ3ζ43ζ3ζ4ζ3ζ4ζ3ζ43ζ32ζ43ζ32ζ4ζ32-1-1    linear of order 12
ρ1511ζ3ζ32-1-1ζ32ζ31-iii-iζ65ζ6ζ65ζ61ζ43ζ3ζ4ζ32ζ4ζ32ζ43ζ32ζ43ζ32ζ4ζ3ζ4ζ3ζ43ζ3-1-1    linear of order 12
ρ1611ζ3ζ32-1-1ζ32ζ31i-i-iiζ65ζ6ζ65ζ61ζ4ζ3ζ43ζ32ζ43ζ32ζ4ζ32ζ4ζ32ζ43ζ3ζ43ζ3ζ4ζ3-1-1    linear of order 12
ρ171-1ζ3ζ32-iiζ6ζ651ζ87ζ8ζ85ζ83ζ82ζ3ζ82ζ32ζ86ζ3ζ86ζ32-1ζ87ζ3ζ8ζ32ζ85ζ32ζ83ζ32ζ87ζ32ζ8ζ3ζ85ζ3ζ83ζ3-ii    linear of order 24
ρ181-1ζ32ζ3-iiζ65ζ61ζ83ζ85ζ8ζ87ζ82ζ32ζ82ζ3ζ86ζ32ζ86ζ3-1ζ83ζ32ζ85ζ3ζ8ζ3ζ87ζ3ζ83ζ3ζ85ζ32ζ8ζ32ζ87ζ32-ii    linear of order 24
ρ191-1ζ3ζ32i-iζ6ζ651ζ8ζ87ζ83ζ85ζ86ζ3ζ86ζ32ζ82ζ3ζ82ζ32-1ζ8ζ3ζ87ζ32ζ83ζ32ζ85ζ32ζ8ζ32ζ87ζ3ζ83ζ3ζ85ζ3i-i    linear of order 24
ρ201-1ζ32ζ3-iiζ65ζ61ζ87ζ8ζ85ζ83ζ82ζ32ζ82ζ3ζ86ζ32ζ86ζ3-1ζ87ζ32ζ8ζ3ζ85ζ3ζ83ζ3ζ87ζ3ζ8ζ32ζ85ζ32ζ83ζ32-ii    linear of order 24
ρ211-1ζ32ζ3i-iζ65ζ61ζ85ζ83ζ87ζ8ζ86ζ32ζ86ζ3ζ82ζ32ζ82ζ3-1ζ85ζ32ζ83ζ3ζ87ζ3ζ8ζ3ζ85ζ3ζ83ζ32ζ87ζ32ζ8ζ32i-i    linear of order 24
ρ221-1ζ3ζ32-iiζ6ζ651ζ83ζ85ζ8ζ87ζ82ζ3ζ82ζ32ζ86ζ3ζ86ζ32-1ζ83ζ3ζ85ζ32ζ8ζ32ζ87ζ32ζ83ζ32ζ85ζ3ζ8ζ3ζ87ζ3-ii    linear of order 24
ρ231-1ζ32ζ3i-iζ65ζ61ζ8ζ87ζ83ζ85ζ86ζ32ζ86ζ3ζ82ζ32ζ82ζ3-1ζ8ζ32ζ87ζ3ζ83ζ3ζ85ζ3ζ8ζ3ζ87ζ32ζ83ζ32ζ85ζ32i-i    linear of order 24
ρ241-1ζ3ζ32i-iζ6ζ651ζ85ζ83ζ87ζ8ζ86ζ3ζ86ζ32ζ82ζ3ζ82ζ32-1ζ85ζ3ζ83ζ32ζ87ζ32ζ8ζ32ζ85ζ32ζ83ζ3ζ87ζ3ζ8ζ3i-i    linear of order 24
ρ2566006600-100000000-100000000-1-1    orthogonal lifted from F7
ρ266600-6-600-100000000-10000000011    symplectic lifted from C7⋊C12, Schur index 2
ρ276-6006i-6i00-100000000100000000-ii    complex faithful
ρ286-600-6i6i00-100000000100000000i-i    complex faithful

Smallest permutation representation of C7⋊C24
On 56 points
Generators in S56
(1 17 9 56 25 40 48)(2 33 49 10 41 18 26)(3 11 27 50 19 34 42)(4 51 43 28 35 12 20)(5 29 21 44 13 52 36)(6 45 37 22 53 30 14)(7 23 15 38 31 46 54)(8 39 55 16 47 24 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)

G:=sub<Sym(56)| (1,17,9,56,25,40,48)(2,33,49,10,41,18,26)(3,11,27,50,19,34,42)(4,51,43,28,35,12,20)(5,29,21,44,13,52,36)(6,45,37,22,53,30,14)(7,23,15,38,31,46,54)(8,39,55,16,47,24,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)>;

G:=Group( (1,17,9,56,25,40,48)(2,33,49,10,41,18,26)(3,11,27,50,19,34,42)(4,51,43,28,35,12,20)(5,29,21,44,13,52,36)(6,45,37,22,53,30,14)(7,23,15,38,31,46,54)(8,39,55,16,47,24,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56) );

G=PermutationGroup([[(1,17,9,56,25,40,48),(2,33,49,10,41,18,26),(3,11,27,50,19,34,42),(4,51,43,28,35,12,20),(5,29,21,44,13,52,36),(6,45,37,22,53,30,14),(7,23,15,38,31,46,54),(8,39,55,16,47,24,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)]])

C7⋊C24 is a maximal subgroup of   C8×F7  C8⋊F7  C28.C12  D4⋊F7  D4.F7  Q82F7  Q8.2F7
C7⋊C24 is a maximal quotient of   C7⋊C48

Matrix representation of C7⋊C24 in GL7(𝔽337)

1000000
033610000
033601000
033600100
033600010
033600001
033600000
,
241000000
013413425402030
001342031340254
01345120300203
013400134254203
05102031342030
00134051203203

G:=sub<GL(7,GF(337))| [1,0,0,0,0,0,0,0,336,336,336,336,336,336,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0],[241,0,0,0,0,0,0,0,134,0,134,134,51,0,0,134,134,51,0,0,134,0,254,203,203,0,203,0,0,0,134,0,134,134,51,0,203,0,0,254,203,203,0,0,254,203,203,0,203] >;

C7⋊C24 in GAP, Magma, Sage, TeX

C_7\rtimes C_{24}
% in TeX

G:=Group("C7:C24");
// GroupNames label

G:=SmallGroup(168,1);
// by ID

G=gap.SmallGroup(168,1);
# by ID

G:=PCGroup([5,-2,-3,-2,-2,-7,30,42,3604,1209]);
// Polycyclic

G:=Group<a,b|a^7=b^24=1,b*a*b^-1=a^3>;
// generators/relations

Export

Subgroup lattice of C7⋊C24 in TeX
Character table of C7⋊C24 in TeX

׿
×
𝔽