Copied to
clipboard

G = C8×C7⋊C3order 168 = 23·3·7

Direct product of C8 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C8×C7⋊C3, C56⋊C3, C72C24, C28.4C6, C14.2C12, C2.(C4×C7⋊C3), C4.2(C2×C7⋊C3), (C4×C7⋊C3).4C2, (C2×C7⋊C3).2C4, SmallGroup(168,2)

Series: Derived Chief Lower central Upper central

C1C7 — C8×C7⋊C3
C1C7C14C28C4×C7⋊C3 — C8×C7⋊C3
C7 — C8×C7⋊C3
C1C8

Generators and relations for C8×C7⋊C3
 G = < a,b,c | a8=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >

7C3
7C6
7C12
7C24

Smallest permutation representation of C8×C7⋊C3
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(1 31 34 16 19 46 49)(2 32 35 9 20 47 50)(3 25 36 10 21 48 51)(4 26 37 11 22 41 52)(5 27 38 12 23 42 53)(6 28 39 13 24 43 54)(7 29 40 14 17 44 55)(8 30 33 15 18 45 56)
(9 50 47)(10 51 48)(11 52 41)(12 53 42)(13 54 43)(14 55 44)(15 56 45)(16 49 46)(17 29 40)(18 30 33)(19 31 34)(20 32 35)(21 25 36)(22 26 37)(23 27 38)(24 28 39)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,31,34,16,19,46,49)(2,32,35,9,20,47,50)(3,25,36,10,21,48,51)(4,26,37,11,22,41,52)(5,27,38,12,23,42,53)(6,28,39,13,24,43,54)(7,29,40,14,17,44,55)(8,30,33,15,18,45,56), (9,50,47)(10,51,48)(11,52,41)(12,53,42)(13,54,43)(14,55,44)(15,56,45)(16,49,46)(17,29,40)(18,30,33)(19,31,34)(20,32,35)(21,25,36)(22,26,37)(23,27,38)(24,28,39)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,31,34,16,19,46,49)(2,32,35,9,20,47,50)(3,25,36,10,21,48,51)(4,26,37,11,22,41,52)(5,27,38,12,23,42,53)(6,28,39,13,24,43,54)(7,29,40,14,17,44,55)(8,30,33,15,18,45,56), (9,50,47)(10,51,48)(11,52,41)(12,53,42)(13,54,43)(14,55,44)(15,56,45)(16,49,46)(17,29,40)(18,30,33)(19,31,34)(20,32,35)(21,25,36)(22,26,37)(23,27,38)(24,28,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(1,31,34,16,19,46,49),(2,32,35,9,20,47,50),(3,25,36,10,21,48,51),(4,26,37,11,22,41,52),(5,27,38,12,23,42,53),(6,28,39,13,24,43,54),(7,29,40,14,17,44,55),(8,30,33,15,18,45,56)], [(9,50,47),(10,51,48),(11,52,41),(12,53,42),(13,54,43),(14,55,44),(15,56,45),(16,49,46),(17,29,40),(18,30,33),(19,31,34),(20,32,35),(21,25,36),(22,26,37),(23,27,38),(24,28,39)]])

C8×C7⋊C3 is a maximal subgroup of   C7⋊C48  C8⋊F7  C56⋊C6  D56⋊C3  C8.F7

40 conjugacy classes

class 1  2 3A3B4A4B6A6B7A7B8A8B8C8D12A12B12C12D14A14B24A···24H28A28B28C28D56A···56H
order1233446677888812121212141424···242828282856···56
size117711773311117777337···733333···3

40 irreducible representations

dim111111113333
type++
imageC1C2C3C4C6C8C12C24C7⋊C3C2×C7⋊C3C4×C7⋊C3C8×C7⋊C3
kernelC8×C7⋊C3C4×C7⋊C3C56C2×C7⋊C3C28C7⋊C3C14C7C8C4C2C1
# reps112224482248

Matrix representation of C8×C7⋊C3 in GL3(𝔽337) generated by

8500
0850
0085
,
2122131
100
010
,
100
124336336
010
G:=sub<GL(3,GF(337))| [85,0,0,0,85,0,0,0,85],[212,1,0,213,0,1,1,0,0],[1,124,0,0,336,1,0,336,0] >;

C8×C7⋊C3 in GAP, Magma, Sage, TeX

C_8\times C_7\rtimes C_3
% in TeX

G:=Group("C8xC7:C3");
// GroupNames label

G:=SmallGroup(168,2);
// by ID

G=gap.SmallGroup(168,2);
# by ID

G:=PCGroup([5,-2,-3,-2,-2,-7,30,42,609]);
// Polycyclic

G:=Group<a,b,c|a^8=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C8×C7⋊C3 in TeX

׿
×
𝔽