Copied to
clipboard

G = C12.D8order 192 = 26·3

19th non-split extension by C12 of D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.19D8, C12.19SD16, C42.224D6, C4⋊Q86S3, C4⋊C4.84D6, C6.61(C2×D8), C4.7(D4⋊S3), C34(C4.4D8), C6.D842C2, (C2×C12).158D4, C4⋊D12.9C2, C6.78(C2×SD16), C12.83(C4○D4), C4.5(Q82S3), (C2×C12).406C23, (C4×C12).135C22, C4.16(Q83S3), C6.58(C4.4D4), (C2×D12).109C22, C2.11(C12.23D4), (C4×C3⋊C8)⋊18C2, (C3×C4⋊Q8)⋊6C2, C2.16(C2×D4⋊S3), (C2×C6).537(C2×D4), (C2×C3⋊C8).263C22, C2.16(C2×Q82S3), (C2×C4).137(C3⋊D4), (C3×C4⋊C4).131C22, (C2×C4).503(C22×S3), C22.209(C2×C3⋊D4), SmallGroup(192,647)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C12.D8
C1C3C6C12C2×C12C2×D12C4⋊D12 — C12.D8
C3C6C2×C12 — C12.D8
C1C22C42C4⋊Q8

Generators and relations for C12.D8
 G = < a,b,c | a12=b8=c2=1, bab-1=a5, cac=a-1, cbc=a6b-1 >

Subgroups: 432 in 118 conjugacy classes, 47 normal (23 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C12, C12, D6, C2×C6, C42, C4⋊C4, C4⋊C4, C2×C8, C2×D4, C2×Q8, C3⋊C8, D12, C2×C12, C2×C12, C3×Q8, C22×S3, C4×C8, D4⋊C4, C41D4, C4⋊Q8, C2×C3⋊C8, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C2×D12, C2×D12, C6×Q8, C4.4D8, C4×C3⋊C8, C6.D8, C4⋊D12, C3×C4⋊Q8, C12.D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, SD16, C2×D4, C4○D4, C3⋊D4, C22×S3, C4.4D4, C2×D8, C2×SD16, D4⋊S3, Q82S3, Q83S3, C2×C3⋊D4, C4.4D8, C2×D4⋊S3, C2×Q82S3, C12.23D4, C12.D8

Smallest permutation representation of C12.D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 33 46 51 81 66 96 20)(2 26 47 56 82 71 85 13)(3 31 48 49 83 64 86 18)(4 36 37 54 84 69 87 23)(5 29 38 59 73 62 88 16)(6 34 39 52 74 67 89 21)(7 27 40 57 75 72 90 14)(8 32 41 50 76 65 91 19)(9 25 42 55 77 70 92 24)(10 30 43 60 78 63 93 17)(11 35 44 53 79 68 94 22)(12 28 45 58 80 61 95 15)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 36)(24 35)(37 93)(38 92)(39 91)(40 90)(41 89)(42 88)(43 87)(44 86)(45 85)(46 96)(47 95)(48 94)(49 62)(50 61)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(73 77)(74 76)(78 84)(79 83)(80 82)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,33,46,51,81,66,96,20)(2,26,47,56,82,71,85,13)(3,31,48,49,83,64,86,18)(4,36,37,54,84,69,87,23)(5,29,38,59,73,62,88,16)(6,34,39,52,74,67,89,21)(7,27,40,57,75,72,90,14)(8,32,41,50,76,65,91,19)(9,25,42,55,77,70,92,24)(10,30,43,60,78,63,93,17)(11,35,44,53,79,68,94,22)(12,28,45,58,80,61,95,15), (2,12)(3,11)(4,10)(5,9)(6,8)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,36)(24,35)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85)(46,96)(47,95)(48,94)(49,62)(50,61)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(73,77)(74,76)(78,84)(79,83)(80,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,33,46,51,81,66,96,20)(2,26,47,56,82,71,85,13)(3,31,48,49,83,64,86,18)(4,36,37,54,84,69,87,23)(5,29,38,59,73,62,88,16)(6,34,39,52,74,67,89,21)(7,27,40,57,75,72,90,14)(8,32,41,50,76,65,91,19)(9,25,42,55,77,70,92,24)(10,30,43,60,78,63,93,17)(11,35,44,53,79,68,94,22)(12,28,45,58,80,61,95,15), (2,12)(3,11)(4,10)(5,9)(6,8)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,36)(24,35)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85)(46,96)(47,95)(48,94)(49,62)(50,61)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(73,77)(74,76)(78,84)(79,83)(80,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,33,46,51,81,66,96,20),(2,26,47,56,82,71,85,13),(3,31,48,49,83,64,86,18),(4,36,37,54,84,69,87,23),(5,29,38,59,73,62,88,16),(6,34,39,52,74,67,89,21),(7,27,40,57,75,72,90,14),(8,32,41,50,76,65,91,19),(9,25,42,55,77,70,92,24),(10,30,43,60,78,63,93,17),(11,35,44,53,79,68,94,22),(12,28,45,58,80,61,95,15)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,36),(24,35),(37,93),(38,92),(39,91),(40,90),(41,89),(42,88),(43,87),(44,86),(45,85),(46,96),(47,95),(48,94),(49,62),(50,61),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(73,77),(74,76),(78,84),(79,83),(80,82)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G4H6A6B6C8A···8H12A···12F12G12H12I12J
order12222234···4446668···812···1212121212
size1111242422···2882226···64···48888

36 irreducible representations

dim1111122222222444
type+++++++++++++
imageC1C2C2C2C2S3D4D6D6D8SD16C4○D4C3⋊D4D4⋊S3Q82S3Q83S3
kernelC12.D8C4×C3⋊C8C6.D8C4⋊D12C3×C4⋊Q8C4⋊Q8C2×C12C42C4⋊C4C12C12C12C2×C4C4C4C4
# reps1141112124444222

Matrix representation of C12.D8 in GL6(𝔽73)

0270000
2700000
000100
00727200
0000720
0000072
,
0720000
7200000
0072000
001100
00001657
00001616
,
100000
0720000
001000
00727200
000010
0000072

G:=sub<GL(6,GF(73))| [0,27,0,0,0,0,27,0,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,0,0,0,57,16],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C12.D8 in GAP, Magma, Sage, TeX

C_{12}.D_8
% in TeX

G:=Group("C12.D8");
// GroupNames label

G:=SmallGroup(192,647);
// by ID

G=gap.SmallGroup(192,647);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,219,100,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=a^6*b^-1>;
// generators/relations

׿
×
𝔽