Extensions 1→N→G→Q→1 with N=C6 and Q=C2xD8

Direct product G=NxQ with N=C6 and Q=C2xD8
dρLabelID
C2xC6xD896C2xC6xD8192,1458

Semidirect products G=N:Q with N=C6 and Q=C2xD8
extensionφ:Q→Aut NdρLabelID
C6:1(C2xD8) = C22xD24φ: C2xD8/C2xC8C2 ⊆ Aut C696C6:1(C2xD8)192,1299
C6:2(C2xD8) = C2xS3xD8φ: C2xD8/D8C2 ⊆ Aut C648C6:2(C2xD8)192,1313
C6:3(C2xD8) = C22xD4:S3φ: C2xD8/C2xD4C2 ⊆ Aut C696C6:3(C2xD8)192,1351

Non-split extensions G=N.Q with N=C6 and Q=C2xD8
extensionφ:Q→Aut NdρLabelID
C6.1(C2xD8) = C24:8Q8φ: C2xD8/C2xC8C2 ⊆ Aut C6192C6.1(C2xD8)192,241
C6.2(C2xD8) = C4xD24φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.2(C2xD8)192,251
C6.3(C2xD8) = C4.5D24φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.3(C2xD8)192,253
C6.4(C2xD8) = C12:4D8φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.4(C2xD8)192,254
C6.5(C2xD8) = D12:13D4φ: C2xD8/C2xC8C2 ⊆ Aut C648C6.5(C2xD8)192,291
C6.6(C2xD8) = C22.D24φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.6(C2xD8)192,295
C6.7(C2xD8) = C4:D24φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.7(C2xD8)192,402
C6.8(C2xD8) = D12:4Q8φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.8(C2xD8)192,405
C6.9(C2xD8) = C2xD48φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.9(C2xD8)192,461
C6.10(C2xD8) = C2xC48:C2φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.10(C2xD8)192,462
C6.11(C2xD8) = D48:7C2φ: C2xD8/C2xC8C2 ⊆ Aut C6962C6.11(C2xD8)192,463
C6.12(C2xD8) = C2xDic24φ: C2xD8/C2xC8C2 ⊆ Aut C6192C6.12(C2xD8)192,464
C6.13(C2xD8) = C16:D6φ: C2xD8/C2xC8C2 ⊆ Aut C6484+C6.13(C2xD8)192,467
C6.14(C2xD8) = C16.D6φ: C2xD8/C2xC8C2 ⊆ Aut C6964-C6.14(C2xD8)192,468
C6.15(C2xD8) = C2xC24:1C4φ: C2xD8/C2xC8C2 ⊆ Aut C6192C6.15(C2xD8)192,664
C6.16(C2xD8) = C2xC2.D24φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.16(C2xD8)192,671
C6.17(C2xD8) = C24:29D4φ: C2xD8/C2xC8C2 ⊆ Aut C696C6.17(C2xD8)192,674
C6.18(C2xD8) = Dic3:4D8φ: C2xD8/D8C2 ⊆ Aut C696C6.18(C2xD8)192,315
C6.19(C2xD8) = Dic3.D8φ: C2xD8/D8C2 ⊆ Aut C696C6.19(C2xD8)192,318
C6.20(C2xD8) = Dic3.SD16φ: C2xD8/D8C2 ⊆ Aut C696C6.20(C2xD8)192,319
C6.21(C2xD8) = S3xD4:C4φ: C2xD8/D8C2 ⊆ Aut C648C6.21(C2xD8)192,328
C6.22(C2xD8) = D4:D12φ: C2xD8/D8C2 ⊆ Aut C648C6.22(C2xD8)192,332
C6.23(C2xD8) = D6.D8φ: C2xD8/D8C2 ⊆ Aut C696C6.23(C2xD8)192,333
C6.24(C2xD8) = D6:D8φ: C2xD8/D8C2 ⊆ Aut C696C6.24(C2xD8)192,334
C6.25(C2xD8) = D12:3D4φ: C2xD8/D8C2 ⊆ Aut C696C6.25(C2xD8)192,345
C6.26(C2xD8) = Dic3:5D8φ: C2xD8/D8C2 ⊆ Aut C696C6.26(C2xD8)192,431
C6.27(C2xD8) = C24:2Q8φ: C2xD8/D8C2 ⊆ Aut C6192C6.27(C2xD8)192,433
C6.28(C2xD8) = S3xC2.D8φ: C2xD8/D8C2 ⊆ Aut C696C6.28(C2xD8)192,438
C6.29(C2xD8) = D6.5D8φ: C2xD8/D8C2 ⊆ Aut C696C6.29(C2xD8)192,441
C6.30(C2xD8) = D6:2D8φ: C2xD8/D8C2 ⊆ Aut C696C6.30(C2xD8)192,442
C6.31(C2xD8) = D12:2Q8φ: C2xD8/D8C2 ⊆ Aut C696C6.31(C2xD8)192,449
C6.32(C2xD8) = S3xD16φ: C2xD8/D8C2 ⊆ Aut C6484+C6.32(C2xD8)192,469
C6.33(C2xD8) = D8:D6φ: C2xD8/D8C2 ⊆ Aut C6484C6.33(C2xD8)192,470
C6.34(C2xD8) = D16:3S3φ: C2xD8/D8C2 ⊆ Aut C6964-C6.34(C2xD8)192,471
C6.35(C2xD8) = S3xSD32φ: C2xD8/D8C2 ⊆ Aut C6484C6.35(C2xD8)192,472
C6.36(C2xD8) = D48:C2φ: C2xD8/D8C2 ⊆ Aut C6484+C6.36(C2xD8)192,473
C6.37(C2xD8) = SD32:S3φ: C2xD8/D8C2 ⊆ Aut C6964-C6.37(C2xD8)192,474
C6.38(C2xD8) = D6.2D8φ: C2xD8/D8C2 ⊆ Aut C6964C6.38(C2xD8)192,475
C6.39(C2xD8) = S3xQ32φ: C2xD8/D8C2 ⊆ Aut C6964-C6.39(C2xD8)192,476
C6.40(C2xD8) = Q32:S3φ: C2xD8/D8C2 ⊆ Aut C6964C6.40(C2xD8)192,477
C6.41(C2xD8) = D48:5C2φ: C2xD8/D8C2 ⊆ Aut C6964+C6.41(C2xD8)192,478
C6.42(C2xD8) = Dic3xD8φ: C2xD8/D8C2 ⊆ Aut C696C6.42(C2xD8)192,708
C6.43(C2xD8) = Dic3:D8φ: C2xD8/D8C2 ⊆ Aut C696C6.43(C2xD8)192,709
C6.44(C2xD8) = C24:5D4φ: C2xD8/D8C2 ⊆ Aut C696C6.44(C2xD8)192,710
C6.45(C2xD8) = D12:D4φ: C2xD8/D8C2 ⊆ Aut C648C6.45(C2xD8)192,715
C6.46(C2xD8) = D6:3D8φ: C2xD8/D8C2 ⊆ Aut C696C6.46(C2xD8)192,716
C6.47(C2xD8) = C2xC6.Q16φ: C2xD8/C2xD4C2 ⊆ Aut C6192C6.47(C2xD8)192,521
C6.48(C2xD8) = C2xC6.D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.48(C2xD8)192,524
C6.49(C2xD8) = (C2xC6).40D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.49(C2xD8)192,526
C6.50(C2xD8) = C12.50D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.50(C2xD8)192,566
C6.51(C2xD8) = C4xD4:S3φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.51(C2xD8)192,572
C6.52(C2xD8) = C12:7D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.52(C2xD8)192,574
C6.53(C2xD8) = (C2xC6).D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.53(C2xD8)192,592
C6.54(C2xD8) = D12:16D4φ: C2xD8/C2xD4C2 ⊆ Aut C648C6.54(C2xD8)192,595
C6.55(C2xD8) = C3:C8:22D4φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.55(C2xD8)192,597
C6.56(C2xD8) = C12.16D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.56(C2xD8)192,629
C6.57(C2xD8) = C12:2D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.57(C2xD8)192,631
C6.58(C2xD8) = C12:D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.58(C2xD8)192,632
C6.59(C2xD8) = C12.17D8φ: C2xD8/C2xD4C2 ⊆ Aut C6192C6.59(C2xD8)192,637
C6.60(C2xD8) = D12:6Q8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.60(C2xD8)192,646
C6.61(C2xD8) = C12.D8φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.61(C2xD8)192,647
C6.62(C2xD8) = C2xC3:D16φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.62(C2xD8)192,705
C6.63(C2xD8) = D8.D6φ: C2xD8/C2xD4C2 ⊆ Aut C6484C6.63(C2xD8)192,706
C6.64(C2xD8) = C2xD8.S3φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.64(C2xD8)192,707
C6.65(C2xD8) = C2xC8.6D6φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.65(C2xD8)192,737
C6.66(C2xD8) = C24.27C23φ: C2xD8/C2xD4C2 ⊆ Aut C6964C6.66(C2xD8)192,738
C6.67(C2xD8) = C2xC3:Q32φ: C2xD8/C2xD4C2 ⊆ Aut C6192C6.67(C2xD8)192,739
C6.68(C2xD8) = Q16:D6φ: C2xD8/C2xD4C2 ⊆ Aut C6484+C6.68(C2xD8)192,752
C6.69(C2xD8) = Q16.D6φ: C2xD8/C2xD4C2 ⊆ Aut C6964C6.69(C2xD8)192,753
C6.70(C2xD8) = D8.9D6φ: C2xD8/C2xD4C2 ⊆ Aut C6964-C6.70(C2xD8)192,754
C6.71(C2xD8) = C2xD4:Dic3φ: C2xD8/C2xD4C2 ⊆ Aut C696C6.71(C2xD8)192,773
C6.72(C2xD8) = (C2xC6):8D8φ: C2xD8/C2xD4C2 ⊆ Aut C648C6.72(C2xD8)192,776
C6.73(C2xD8) = C6xD4:C4central extension (φ=1)96C6.73(C2xD8)192,847
C6.74(C2xD8) = C6xC2.D8central extension (φ=1)192C6.74(C2xD8)192,859
C6.75(C2xD8) = C12xD8central extension (φ=1)96C6.75(C2xD8)192,870
C6.76(C2xD8) = C3xC22:D8central extension (φ=1)48C6.76(C2xD8)192,880
C6.77(C2xD8) = C3xC4:D8central extension (φ=1)96C6.77(C2xD8)192,892
C6.78(C2xD8) = C3xC8:7D4central extension (φ=1)96C6.78(C2xD8)192,899
C6.79(C2xD8) = C3xD4:Q8central extension (φ=1)96C6.79(C2xD8)192,907
C6.80(C2xD8) = C3xC22.D8central extension (φ=1)96C6.80(C2xD8)192,913
C6.81(C2xD8) = C3xC4.4D8central extension (φ=1)96C6.81(C2xD8)192,919
C6.82(C2xD8) = C3xC8:4D4central extension (φ=1)96C6.82(C2xD8)192,926
C6.83(C2xD8) = C3xC8:2Q8central extension (φ=1)192C6.83(C2xD8)192,933
C6.84(C2xD8) = C6xD16central extension (φ=1)96C6.84(C2xD8)192,938
C6.85(C2xD8) = C6xSD32central extension (φ=1)96C6.85(C2xD8)192,939
C6.86(C2xD8) = C6xQ32central extension (φ=1)192C6.86(C2xD8)192,940
C6.87(C2xD8) = C3xC4oD16central extension (φ=1)962C6.87(C2xD8)192,941
C6.88(C2xD8) = C3xC16:C22central extension (φ=1)484C6.88(C2xD8)192,942
C6.89(C2xD8) = C3xQ32:C2central extension (φ=1)964C6.89(C2xD8)192,943

׿
x
:
Z
F
o
wr
Q
<