extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2xD8) = C24:8Q8 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.1(C2xD8) | 192,241 |
C6.2(C2xD8) = C4xD24 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.2(C2xD8) | 192,251 |
C6.3(C2xD8) = C4.5D24 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.3(C2xD8) | 192,253 |
C6.4(C2xD8) = C12:4D8 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.4(C2xD8) | 192,254 |
C6.5(C2xD8) = D12:13D4 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 48 | | C6.5(C2xD8) | 192,291 |
C6.6(C2xD8) = C22.D24 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.6(C2xD8) | 192,295 |
C6.7(C2xD8) = C4:D24 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.7(C2xD8) | 192,402 |
C6.8(C2xD8) = D12:4Q8 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.8(C2xD8) | 192,405 |
C6.9(C2xD8) = C2xD48 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.9(C2xD8) | 192,461 |
C6.10(C2xD8) = C2xC48:C2 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.10(C2xD8) | 192,462 |
C6.11(C2xD8) = D48:7C2 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | 2 | C6.11(C2xD8) | 192,463 |
C6.12(C2xD8) = C2xDic24 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.12(C2xD8) | 192,464 |
C6.13(C2xD8) = C16:D6 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 48 | 4+ | C6.13(C2xD8) | 192,467 |
C6.14(C2xD8) = C16.D6 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | 4- | C6.14(C2xD8) | 192,468 |
C6.15(C2xD8) = C2xC24:1C4 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.15(C2xD8) | 192,664 |
C6.16(C2xD8) = C2xC2.D24 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.16(C2xD8) | 192,671 |
C6.17(C2xD8) = C24:29D4 | φ: C2xD8/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.17(C2xD8) | 192,674 |
C6.18(C2xD8) = Dic3:4D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.18(C2xD8) | 192,315 |
C6.19(C2xD8) = Dic3.D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.19(C2xD8) | 192,318 |
C6.20(C2xD8) = Dic3.SD16 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.20(C2xD8) | 192,319 |
C6.21(C2xD8) = S3xD4:C4 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 48 | | C6.21(C2xD8) | 192,328 |
C6.22(C2xD8) = D4:D12 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 48 | | C6.22(C2xD8) | 192,332 |
C6.23(C2xD8) = D6.D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.23(C2xD8) | 192,333 |
C6.24(C2xD8) = D6:D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.24(C2xD8) | 192,334 |
C6.25(C2xD8) = D12:3D4 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.25(C2xD8) | 192,345 |
C6.26(C2xD8) = Dic3:5D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.26(C2xD8) | 192,431 |
C6.27(C2xD8) = C24:2Q8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 192 | | C6.27(C2xD8) | 192,433 |
C6.28(C2xD8) = S3xC2.D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.28(C2xD8) | 192,438 |
C6.29(C2xD8) = D6.5D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.29(C2xD8) | 192,441 |
C6.30(C2xD8) = D6:2D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.30(C2xD8) | 192,442 |
C6.31(C2xD8) = D12:2Q8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.31(C2xD8) | 192,449 |
C6.32(C2xD8) = S3xD16 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 48 | 4+ | C6.32(C2xD8) | 192,469 |
C6.33(C2xD8) = D8:D6 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 48 | 4 | C6.33(C2xD8) | 192,470 |
C6.34(C2xD8) = D16:3S3 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | 4- | C6.34(C2xD8) | 192,471 |
C6.35(C2xD8) = S3xSD32 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 48 | 4 | C6.35(C2xD8) | 192,472 |
C6.36(C2xD8) = D48:C2 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 48 | 4+ | C6.36(C2xD8) | 192,473 |
C6.37(C2xD8) = SD32:S3 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | 4- | C6.37(C2xD8) | 192,474 |
C6.38(C2xD8) = D6.2D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | 4 | C6.38(C2xD8) | 192,475 |
C6.39(C2xD8) = S3xQ32 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | 4- | C6.39(C2xD8) | 192,476 |
C6.40(C2xD8) = Q32:S3 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | 4 | C6.40(C2xD8) | 192,477 |
C6.41(C2xD8) = D48:5C2 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | 4+ | C6.41(C2xD8) | 192,478 |
C6.42(C2xD8) = Dic3xD8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.42(C2xD8) | 192,708 |
C6.43(C2xD8) = Dic3:D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.43(C2xD8) | 192,709 |
C6.44(C2xD8) = C24:5D4 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.44(C2xD8) | 192,710 |
C6.45(C2xD8) = D12:D4 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 48 | | C6.45(C2xD8) | 192,715 |
C6.46(C2xD8) = D6:3D8 | φ: C2xD8/D8 → C2 ⊆ Aut C6 | 96 | | C6.46(C2xD8) | 192,716 |
C6.47(C2xD8) = C2xC6.Q16 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.47(C2xD8) | 192,521 |
C6.48(C2xD8) = C2xC6.D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.48(C2xD8) | 192,524 |
C6.49(C2xD8) = (C2xC6).40D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.49(C2xD8) | 192,526 |
C6.50(C2xD8) = C12.50D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.50(C2xD8) | 192,566 |
C6.51(C2xD8) = C4xD4:S3 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.51(C2xD8) | 192,572 |
C6.52(C2xD8) = C12:7D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.52(C2xD8) | 192,574 |
C6.53(C2xD8) = (C2xC6).D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.53(C2xD8) | 192,592 |
C6.54(C2xD8) = D12:16D4 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.54(C2xD8) | 192,595 |
C6.55(C2xD8) = C3:C8:22D4 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.55(C2xD8) | 192,597 |
C6.56(C2xD8) = C12.16D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.56(C2xD8) | 192,629 |
C6.57(C2xD8) = C12:2D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.57(C2xD8) | 192,631 |
C6.58(C2xD8) = C12:D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.58(C2xD8) | 192,632 |
C6.59(C2xD8) = C12.17D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.59(C2xD8) | 192,637 |
C6.60(C2xD8) = D12:6Q8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.60(C2xD8) | 192,646 |
C6.61(C2xD8) = C12.D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.61(C2xD8) | 192,647 |
C6.62(C2xD8) = C2xC3:D16 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.62(C2xD8) | 192,705 |
C6.63(C2xD8) = D8.D6 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 48 | 4 | C6.63(C2xD8) | 192,706 |
C6.64(C2xD8) = C2xD8.S3 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.64(C2xD8) | 192,707 |
C6.65(C2xD8) = C2xC8.6D6 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.65(C2xD8) | 192,737 |
C6.66(C2xD8) = C24.27C23 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | 4 | C6.66(C2xD8) | 192,738 |
C6.67(C2xD8) = C2xC3:Q32 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.67(C2xD8) | 192,739 |
C6.68(C2xD8) = Q16:D6 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.68(C2xD8) | 192,752 |
C6.69(C2xD8) = Q16.D6 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | 4 | C6.69(C2xD8) | 192,753 |
C6.70(C2xD8) = D8.9D6 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | 4- | C6.70(C2xD8) | 192,754 |
C6.71(C2xD8) = C2xD4:Dic3 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.71(C2xD8) | 192,773 |
C6.72(C2xD8) = (C2xC6):8D8 | φ: C2xD8/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.72(C2xD8) | 192,776 |
C6.73(C2xD8) = C6xD4:C4 | central extension (φ=1) | 96 | | C6.73(C2xD8) | 192,847 |
C6.74(C2xD8) = C6xC2.D8 | central extension (φ=1) | 192 | | C6.74(C2xD8) | 192,859 |
C6.75(C2xD8) = C12xD8 | central extension (φ=1) | 96 | | C6.75(C2xD8) | 192,870 |
C6.76(C2xD8) = C3xC22:D8 | central extension (φ=1) | 48 | | C6.76(C2xD8) | 192,880 |
C6.77(C2xD8) = C3xC4:D8 | central extension (φ=1) | 96 | | C6.77(C2xD8) | 192,892 |
C6.78(C2xD8) = C3xC8:7D4 | central extension (φ=1) | 96 | | C6.78(C2xD8) | 192,899 |
C6.79(C2xD8) = C3xD4:Q8 | central extension (φ=1) | 96 | | C6.79(C2xD8) | 192,907 |
C6.80(C2xD8) = C3xC22.D8 | central extension (φ=1) | 96 | | C6.80(C2xD8) | 192,913 |
C6.81(C2xD8) = C3xC4.4D8 | central extension (φ=1) | 96 | | C6.81(C2xD8) | 192,919 |
C6.82(C2xD8) = C3xC8:4D4 | central extension (φ=1) | 96 | | C6.82(C2xD8) | 192,926 |
C6.83(C2xD8) = C3xC8:2Q8 | central extension (φ=1) | 192 | | C6.83(C2xD8) | 192,933 |
C6.84(C2xD8) = C6xD16 | central extension (φ=1) | 96 | | C6.84(C2xD8) | 192,938 |
C6.85(C2xD8) = C6xSD32 | central extension (φ=1) | 96 | | C6.85(C2xD8) | 192,939 |
C6.86(C2xD8) = C6xQ32 | central extension (φ=1) | 192 | | C6.86(C2xD8) | 192,940 |
C6.87(C2xD8) = C3xC4oD16 | central extension (φ=1) | 96 | 2 | C6.87(C2xD8) | 192,941 |
C6.88(C2xD8) = C3xC16:C22 | central extension (φ=1) | 48 | 4 | C6.88(C2xD8) | 192,942 |
C6.89(C2xD8) = C3xQ32:C2 | central extension (φ=1) | 96 | 4 | C6.89(C2xD8) | 192,943 |