Extensions 1→N→G→Q→1 with N=C4 and Q=D4⋊S3

Direct product G=N×Q with N=C4 and Q=D4⋊S3
dρLabelID
C4×D4⋊S396C4xD4:S3192,572

Semidirect products G=N:Q with N=C4 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C41(D4⋊S3) = C12⋊D8φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C496C4:1(D4:S3)192,632
C42(D4⋊S3) = C122D8φ: D4⋊S3/D12C2 ⊆ Aut C496C4:2(D4:S3)192,631
C43(D4⋊S3) = C127D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C496C4:3(D4:S3)192,574

Non-split extensions G=N.Q with N=C4 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C4.1(D4⋊S3) = C3⋊D32φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C4964+C4.1(D4:S3)192,78
C4.2(D4⋊S3) = D16.S3φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C4964-C4.2(D4:S3)192,79
C4.3(D4⋊S3) = C3⋊SD64φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C4964+C4.3(D4:S3)192,80
C4.4(D4⋊S3) = C3⋊Q64φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C41924-C4.4(D4:S3)192,81
C4.5(D4⋊S3) = C12.16D8φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C496C4.5(D4:S3)192,629
C4.6(D4⋊S3) = C12.17D8φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C4192C4.6(D4:S3)192,637
C4.7(D4⋊S3) = C12.D8φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C496C4.7(D4:S3)192,647
C4.8(D4⋊S3) = C2×C3⋊D16φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C496C4.8(D4:S3)192,705
C4.9(D4⋊S3) = C2×D8.S3φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C496C4.9(D4:S3)192,707
C4.10(D4⋊S3) = C2×C8.6D6φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C496C4.10(D4:S3)192,737
C4.11(D4⋊S3) = C2×C3⋊Q32φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C4192C4.11(D4:S3)192,739
C4.12(D4⋊S3) = C12.9D8φ: D4⋊S3/D12C2 ⊆ Aut C496C4.12(D4:S3)192,103
C4.13(D4⋊S3) = C12.10D8φ: D4⋊S3/D12C2 ⊆ Aut C4192C4.13(D4:S3)192,106
C4.14(D4⋊S3) = D8.Dic3φ: D4⋊S3/D12C2 ⊆ Aut C4484C4.14(D4:S3)192,122
C4.15(D4⋊S3) = Q16.Dic3φ: D4⋊S3/D12C2 ⊆ Aut C4964C4.15(D4:S3)192,124
C4.16(D4⋊S3) = D126Q8φ: D4⋊S3/D12C2 ⊆ Aut C496C4.16(D4:S3)192,646
C4.17(D4⋊S3) = D8.D6φ: D4⋊S3/D12C2 ⊆ Aut C4484C4.17(D4:S3)192,706
C4.18(D4⋊S3) = C24.27C23φ: D4⋊S3/D12C2 ⊆ Aut C4964C4.18(D4:S3)192,738
C4.19(D4⋊S3) = C12.47D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C4192C4.19(D4:S3)192,41
C4.20(D4⋊S3) = C4.D24φ: D4⋊S3/C3×D4C2 ⊆ Aut C496C4.20(D4:S3)192,44
C4.21(D4⋊S3) = D24.C4φ: D4⋊S3/C3×D4C2 ⊆ Aut C4484+C4.21(D4:S3)192,54
C4.22(D4⋊S3) = C24.8D4φ: D4⋊S3/C3×D4C2 ⊆ Aut C4964-C4.22(D4:S3)192,55
C4.23(D4⋊S3) = C12.50D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C496C4.23(D4:S3)192,566
C4.24(D4⋊S3) = Q16⋊D6φ: D4⋊S3/C3×D4C2 ⊆ Aut C4484+C4.24(D4:S3)192,752
C4.25(D4⋊S3) = D8.9D6φ: D4⋊S3/C3×D4C2 ⊆ Aut C4964-C4.25(D4:S3)192,754
C4.26(D4⋊S3) = C12.53D8central extension (φ=1)192C4.26(D4:S3)192,38
C4.27(D4⋊S3) = D122C8central extension (φ=1)96C4.27(D4:S3)192,42
C4.28(D4⋊S3) = C24.7Q8central extension (φ=1)964C4.28(D4:S3)192,52
C4.29(D4⋊S3) = Dic12.C4central extension (φ=1)964C4.29(D4:S3)192,56
C4.30(D4⋊S3) = C12.57D8central extension (φ=1)96C4.30(D4:S3)192,93
C4.31(D4⋊S3) = C24.41D4central extension (φ=1)964C4.31(D4:S3)192,126
C4.32(D4⋊S3) = Q16.D6central extension (φ=1)964C4.32(D4:S3)192,753

׿
×
𝔽