Copied to
clipboard

G = C24:2D4order 192 = 26·3

2nd semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24:2D4, C23.22D12, C3:6(C8:D4), C8:1(C3:D4), (C2xC8).77D6, C24:1C4:18C2, (C2xC4).51D12, C12.420(C2xD4), (C2xC12).297D4, C2.D24:41C2, (C2xM4(2)):1S3, (C6xM4(2)):1C2, C12:7D4.17C2, C6.73(C4:D4), C2.22(C8:D6), C6.22(C8:C22), (C2xC24).63C22, C2.Dic12:41C2, (C22xC4).158D6, (C22xC6).103D4, C12.230(C4oD4), C4.114(C4oD12), C12.48D4:41C2, C2.21(C12:7D4), (C2xC12).775C23, C2.22(C8.D6), (C2xD12).20C22, C22.134(C2xD12), C6.22(C8.C22), C4:Dic3.26C22, (C2xDic6).19C22, (C22xC12).304C22, (C2xC24:C2):2C2, (C2xC6).165(C2xD4), C4.113(C2xC3:D4), (C2xC4).724(C22xS3), SmallGroup(192,693)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24:2D4
C1C3C6C2xC6C2xC12C2xD12C2xC24:C2 — C24:2D4
C3C6C2xC12 — C24:2D4
C1C22C22xC4C2xM4(2)

Generators and relations for C24:2D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a-1, cac=a11, cbc=b-1 >

Subgroups: 392 in 120 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C22:C4, C4:C4, C2xC8, M4(2), SD16, C22xC4, C2xD4, C2xQ8, C24, C24, Dic6, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, D4:C4, Q8:C4, C2.D8, C4:D4, C22:Q8, C2xM4(2), C2xSD16, C24:C2, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C2xC24, C3xM4(2), C2xDic6, C2xD12, C2xC3:D4, C22xC12, C8:D4, C2.Dic12, C24:1C4, C2.D24, C2xC24:C2, C12.48D4, C12:7D4, C6xM4(2), C24:2D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C3:D4, C22xS3, C4:D4, C8:C22, C8.C22, C2xD12, C4oD12, C2xC3:D4, C8:D4, C8:D6, C8.D6, C12:7D4, C24:2D4

Smallest permutation representation of C24:2D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 53 88 45)(2 52 89 44)(3 51 90 43)(4 50 91 42)(5 49 92 41)(6 72 93 40)(7 71 94 39)(8 70 95 38)(9 69 96 37)(10 68 73 36)(11 67 74 35)(12 66 75 34)(13 65 76 33)(14 64 77 32)(15 63 78 31)(16 62 79 30)(17 61 80 29)(18 60 81 28)(19 59 82 27)(20 58 83 26)(21 57 84 25)(22 56 85 48)(23 55 86 47)(24 54 87 46)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 49)(26 60)(27 71)(28 58)(29 69)(30 56)(31 67)(32 54)(33 65)(34 52)(35 63)(36 50)(37 61)(38 72)(39 59)(40 70)(41 57)(42 68)(43 55)(44 66)(45 53)(46 64)(47 51)(48 62)(73 91)(74 78)(75 89)(77 87)(79 85)(80 96)(81 83)(82 94)(84 92)(86 90)(93 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,53,88,45)(2,52,89,44)(3,51,90,43)(4,50,91,42)(5,49,92,41)(6,72,93,40)(7,71,94,39)(8,70,95,38)(9,69,96,37)(10,68,73,36)(11,67,74,35)(12,66,75,34)(13,65,76,33)(14,64,77,32)(15,63,78,31)(16,62,79,30)(17,61,80,29)(18,60,81,28)(19,59,82,27)(20,58,83,26)(21,57,84,25)(22,56,85,48)(23,55,86,47)(24,54,87,46), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,49)(26,60)(27,71)(28,58)(29,69)(30,56)(31,67)(32,54)(33,65)(34,52)(35,63)(36,50)(37,61)(38,72)(39,59)(40,70)(41,57)(42,68)(43,55)(44,66)(45,53)(46,64)(47,51)(48,62)(73,91)(74,78)(75,89)(77,87)(79,85)(80,96)(81,83)(82,94)(84,92)(86,90)(93,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,53,88,45)(2,52,89,44)(3,51,90,43)(4,50,91,42)(5,49,92,41)(6,72,93,40)(7,71,94,39)(8,70,95,38)(9,69,96,37)(10,68,73,36)(11,67,74,35)(12,66,75,34)(13,65,76,33)(14,64,77,32)(15,63,78,31)(16,62,79,30)(17,61,80,29)(18,60,81,28)(19,59,82,27)(20,58,83,26)(21,57,84,25)(22,56,85,48)(23,55,86,47)(24,54,87,46), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,49)(26,60)(27,71)(28,58)(29,69)(30,56)(31,67)(32,54)(33,65)(34,52)(35,63)(36,50)(37,61)(38,72)(39,59)(40,70)(41,57)(42,68)(43,55)(44,66)(45,53)(46,64)(47,51)(48,62)(73,91)(74,78)(75,89)(77,87)(79,85)(80,96)(81,83)(82,94)(84,92)(86,90)(93,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,53,88,45),(2,52,89,44),(3,51,90,43),(4,50,91,42),(5,49,92,41),(6,72,93,40),(7,71,94,39),(8,70,95,38),(9,69,96,37),(10,68,73,36),(11,67,74,35),(12,66,75,34),(13,65,76,33),(14,64,77,32),(15,63,78,31),(16,62,79,30),(17,61,80,29),(18,60,81,28),(19,59,82,27),(20,58,83,26),(21,57,84,25),(22,56,85,48),(23,55,86,47),(24,54,87,46)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,49),(26,60),(27,71),(28,58),(29,69),(30,56),(31,67),(32,54),(33,65),(34,52),(35,63),(36,50),(37,61),(38,72),(39,59),(40,70),(41,57),(42,68),(43,55),(44,66),(45,53),(46,64),(47,51),(48,62),(73,91),(74,78),(75,89),(77,87),(79,85),(80,96),(81,83),(82,94),(84,92),(86,90),(93,95)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order122222344444466666888812121212121224···24
size111142422242424242224444442222444···4

36 irreducible representations

dim11111111222222222224444
type+++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2S3D4D4D4D6D6C4oD4C3:D4D12D12C4oD12C8:C22C8.C22C8:D6C8.D6
kernelC24:2D4C2.Dic12C24:1C4C2.D24C2xC24:C2C12.48D4C12:7D4C6xM4(2)C2xM4(2)C24C2xC12C22xC6C2xC8C22xC4C12C8C2xC4C23C4C6C6C2C2
# reps11111111121121242241122

Matrix representation of C24:2D4 in GL8(F73)

720000000
072000000
00010000
007210000
000056366
00004153180
000052525535
000062112655
,
12000000
7272000000
000720000
007200000
000058020
0000281733
0000330150
000070257156
,
10000000
7272000000
00010000
00100000
00001000
000037200
0000150720
0000566001

G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,56,41,52,62,0,0,0,0,3,53,52,11,0,0,0,0,6,18,55,26,0,0,0,0,6,0,35,55],[1,72,0,0,0,0,0,0,2,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,58,28,33,70,0,0,0,0,0,17,0,25,0,0,0,0,2,3,15,71,0,0,0,0,0,3,0,56],[1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,3,15,56,0,0,0,0,0,72,0,60,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1] >;

C24:2D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_2D_4
% in TeX

G:=Group("C24:2D4");
// GroupNames label

G:=SmallGroup(192,693);
// by ID

G=gap.SmallGroup(192,693);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,387,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^11,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<