Copied to
clipboard

G = C24:3D4order 192 = 26·3

3rd semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24:3D4, C23.23D12, C8:2(C3:D4), C3:4(C8:2D4), C8:Dic3:4C2, (C2xC8).78D6, (C2xD24):12C2, (C2xC4).52D12, C12:7D4:41C2, C12.421(C2xD4), C2.D24:42C2, (C2xC12).298D4, (C2xM4(2)):2S3, (C6xM4(2)):2C2, C6.74(C4:D4), C2.23(C8:D6), C6.23(C8:C22), (C2xC24).64C22, (C22xC6).104D4, (C22xC4).159D6, C12.231(C4oD4), C4.115(C4oD12), C2.22(C12:7D4), (C2xC12).776C23, (C2xD12).21C22, C22.135(C2xD12), C4:Dic3.27C22, (C22xC12).305C22, (C2xC6).166(C2xD4), C4.114(C2xC3:D4), (C2xC4).725(C22xS3), SmallGroup(192,694)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24:3D4
C1C3C6C2xC6C2xC12C2xD12C2xD24 — C24:3D4
C3C6C2xC12 — C24:3D4
C1C22C22xC4C2xM4(2)

Generators and relations for C24:3D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a11, cac=a-1, cbc=b-1 >

Subgroups: 488 in 130 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C8, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C22:C4, C4:C4, C2xC8, M4(2), D8, C22xC4, C2xD4, C24, C24, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, D4:C4, C4.Q8, C4:D4, C2xM4(2), C2xD8, D24, C4:Dic3, D6:C4, C2xC24, C3xM4(2), C2xD12, C2xC3:D4, C22xC12, C8:2D4, C8:Dic3, C2.D24, C2xD24, C12:7D4, C6xM4(2), C24:3D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C3:D4, C22xS3, C4:D4, C8:C22, C2xD12, C4oD12, C2xC3:D4, C8:2D4, C8:D6, C12:7D4, C24:3D4

Smallest permutation representation of C24:3D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 85 56 38)(2 96 57 25)(3 83 58 36)(4 94 59 47)(5 81 60 34)(6 92 61 45)(7 79 62 32)(8 90 63 43)(9 77 64 30)(10 88 65 41)(11 75 66 28)(12 86 67 39)(13 73 68 26)(14 84 69 37)(15 95 70 48)(16 82 71 35)(17 93 72 46)(18 80 49 33)(19 91 50 44)(20 78 51 31)(21 89 52 42)(22 76 53 29)(23 87 54 40)(24 74 55 27)
(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(25 74)(26 73)(27 96)(28 95)(29 94)(30 93)(31 92)(32 91)(33 90)(34 89)(35 88)(36 87)(37 86)(38 85)(39 84)(40 83)(41 82)(42 81)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)(64 72)(65 71)(66 70)(67 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,85,56,38)(2,96,57,25)(3,83,58,36)(4,94,59,47)(5,81,60,34)(6,92,61,45)(7,79,62,32)(8,90,63,43)(9,77,64,30)(10,88,65,41)(11,75,66,28)(12,86,67,39)(13,73,68,26)(14,84,69,37)(15,95,70,48)(16,82,71,35)(17,93,72,46)(18,80,49,33)(19,91,50,44)(20,78,51,31)(21,89,52,42)(22,76,53,29)(23,87,54,40)(24,74,55,27), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,74)(26,73)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(64,72)(65,71)(66,70)(67,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,85,56,38)(2,96,57,25)(3,83,58,36)(4,94,59,47)(5,81,60,34)(6,92,61,45)(7,79,62,32)(8,90,63,43)(9,77,64,30)(10,88,65,41)(11,75,66,28)(12,86,67,39)(13,73,68,26)(14,84,69,37)(15,95,70,48)(16,82,71,35)(17,93,72,46)(18,80,49,33)(19,91,50,44)(20,78,51,31)(21,89,52,42)(22,76,53,29)(23,87,54,40)(24,74,55,27), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,74)(26,73)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(64,72)(65,71)(66,70)(67,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,85,56,38),(2,96,57,25),(3,83,58,36),(4,94,59,47),(5,81,60,34),(6,92,61,45),(7,79,62,32),(8,90,63,43),(9,77,64,30),(10,88,65,41),(11,75,66,28),(12,86,67,39),(13,73,68,26),(14,84,69,37),(15,95,70,48),(16,82,71,35),(17,93,72,46),(18,80,49,33),(19,91,50,44),(20,78,51,31),(21,89,52,42),(22,76,53,29),(23,87,54,40),(24,74,55,27)], [(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(25,74),(26,73),(27,96),(28,95),(29,94),(30,93),(31,92),(32,91),(33,90),(34,89),(35,88),(36,87),(37,86),(38,85),(39,84),(40,83),(41,82),(42,81),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57),(64,72),(65,71),(66,70),(67,69)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order122222234444466666888812121212121224···24
size111142424222424242224444442222444···4

36 irreducible representations

dim1111112222222222244
type++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D4D6D6C4oD4C3:D4D12D12C4oD12C8:C22C8:D6
kernelC24:3D4C8:Dic3C2.D24C2xD24C12:7D4C6xM4(2)C2xM4(2)C24C2xC12C22xC6C2xC8C22xC4C12C8C2xC4C23C4C6C2
# reps1121211211212422424

Matrix representation of C24:3D4 in GL6(F73)

100000
010000
001634932
0070134117
001635770
007013360
,
0720000
100000
0010710
00727222
0000720
000011
,
100000
0720000
001000
00727200
000010
00007272

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,70,16,70,0,0,3,13,3,13,0,0,49,41,57,3,0,0,32,17,70,60],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,71,2,72,1,0,0,0,2,0,1],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

C24:3D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_3D_4
% in TeX

G:=Group("C24:3D4");
// GroupNames label

G:=SmallGroup(192,694);
// by ID

G=gap.SmallGroup(192,694);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,387,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^11,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<