Copied to
clipboard

G = C243D4order 192 = 26·3

3rd semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C243D4, C23.23D12, C82(C3⋊D4), C34(C82D4), C8⋊Dic34C2, (C2×C8).78D6, (C2×D24)⋊12C2, (C2×C4).52D12, C127D441C2, C12.421(C2×D4), C2.D2442C2, (C2×C12).298D4, (C2×M4(2))⋊2S3, (C6×M4(2))⋊2C2, C6.74(C4⋊D4), C2.23(C8⋊D6), C6.23(C8⋊C22), (C2×C24).64C22, (C22×C6).104D4, (C22×C4).159D6, C12.231(C4○D4), C4.115(C4○D12), C2.22(C127D4), (C2×C12).776C23, (C2×D12).21C22, C22.135(C2×D12), C4⋊Dic3.27C22, (C22×C12).305C22, (C2×C6).166(C2×D4), C4.114(C2×C3⋊D4), (C2×C4).725(C22×S3), SmallGroup(192,694)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C243D4
C1C3C6C2×C6C2×C12C2×D12C2×D24 — C243D4
C3C6C2×C12 — C243D4
C1C22C22×C4C2×M4(2)

Generators and relations for C243D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a11, cac=a-1, cbc=b-1 >

Subgroups: 488 in 130 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C8, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, M4(2), D8, C22×C4, C2×D4, C24, C24, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, D4⋊C4, C4.Q8, C4⋊D4, C2×M4(2), C2×D8, D24, C4⋊Dic3, D6⋊C4, C2×C24, C3×M4(2), C2×D12, C2×C3⋊D4, C22×C12, C82D4, C8⋊Dic3, C2.D24, C2×D24, C127D4, C6×M4(2), C243D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C3⋊D4, C22×S3, C4⋊D4, C8⋊C22, C2×D12, C4○D12, C2×C3⋊D4, C82D4, C8⋊D6, C127D4, C243D4

Smallest permutation representation of C243D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 85 56 38)(2 96 57 25)(3 83 58 36)(4 94 59 47)(5 81 60 34)(6 92 61 45)(7 79 62 32)(8 90 63 43)(9 77 64 30)(10 88 65 41)(11 75 66 28)(12 86 67 39)(13 73 68 26)(14 84 69 37)(15 95 70 48)(16 82 71 35)(17 93 72 46)(18 80 49 33)(19 91 50 44)(20 78 51 31)(21 89 52 42)(22 76 53 29)(23 87 54 40)(24 74 55 27)
(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(25 74)(26 73)(27 96)(28 95)(29 94)(30 93)(31 92)(32 91)(33 90)(34 89)(35 88)(36 87)(37 86)(38 85)(39 84)(40 83)(41 82)(42 81)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)(64 72)(65 71)(66 70)(67 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,85,56,38)(2,96,57,25)(3,83,58,36)(4,94,59,47)(5,81,60,34)(6,92,61,45)(7,79,62,32)(8,90,63,43)(9,77,64,30)(10,88,65,41)(11,75,66,28)(12,86,67,39)(13,73,68,26)(14,84,69,37)(15,95,70,48)(16,82,71,35)(17,93,72,46)(18,80,49,33)(19,91,50,44)(20,78,51,31)(21,89,52,42)(22,76,53,29)(23,87,54,40)(24,74,55,27), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,74)(26,73)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(64,72)(65,71)(66,70)(67,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,85,56,38)(2,96,57,25)(3,83,58,36)(4,94,59,47)(5,81,60,34)(6,92,61,45)(7,79,62,32)(8,90,63,43)(9,77,64,30)(10,88,65,41)(11,75,66,28)(12,86,67,39)(13,73,68,26)(14,84,69,37)(15,95,70,48)(16,82,71,35)(17,93,72,46)(18,80,49,33)(19,91,50,44)(20,78,51,31)(21,89,52,42)(22,76,53,29)(23,87,54,40)(24,74,55,27), (2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,74)(26,73)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(64,72)(65,71)(66,70)(67,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,85,56,38),(2,96,57,25),(3,83,58,36),(4,94,59,47),(5,81,60,34),(6,92,61,45),(7,79,62,32),(8,90,63,43),(9,77,64,30),(10,88,65,41),(11,75,66,28),(12,86,67,39),(13,73,68,26),(14,84,69,37),(15,95,70,48),(16,82,71,35),(17,93,72,46),(18,80,49,33),(19,91,50,44),(20,78,51,31),(21,89,52,42),(22,76,53,29),(23,87,54,40),(24,74,55,27)], [(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(25,74),(26,73),(27,96),(28,95),(29,94),(30,93),(31,92),(32,91),(33,90),(34,89),(35,88),(36,87),(37,86),(38,85),(39,84),(40,83),(41,82),(42,81),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57),(64,72),(65,71),(66,70),(67,69)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order122222234444466666888812121212121224···24
size111142424222424242224444442222444···4

36 irreducible representations

dim1111112222222222244
type++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D4D6D6C4○D4C3⋊D4D12D12C4○D12C8⋊C22C8⋊D6
kernelC243D4C8⋊Dic3C2.D24C2×D24C127D4C6×M4(2)C2×M4(2)C24C2×C12C22×C6C2×C8C22×C4C12C8C2×C4C23C4C6C2
# reps1121211211212422424

Matrix representation of C243D4 in GL6(𝔽73)

100000
010000
001634932
0070134117
001635770
007013360
,
0720000
100000
0010710
00727222
0000720
000011
,
100000
0720000
001000
00727200
000010
00007272

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,70,16,70,0,0,3,13,3,13,0,0,49,41,57,3,0,0,32,17,70,60],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,71,2,72,1,0,0,0,2,0,1],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

C243D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_3D_4
% in TeX

G:=Group("C24:3D4");
// GroupNames label

G:=SmallGroup(192,694);
// by ID

G=gap.SmallGroup(192,694);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,387,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^11,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽