Copied to
clipboard

G = D12.Q8order 192 = 26·3

1st non-split extension by D12 of Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.1Q8, C4.4(S3xQ8), C4.Q8:12S3, C3:4(D4.Q8), C4:C4.165D6, (C2xC8).142D6, C12.16(C2xQ8), Dic3:C8:31C2, C6.58(C4oD8), C6.Q16:18C2, C4.Dic6:6C2, C6.D8.6C2, Dic3:5D4.6C2, C4.77(C4oD12), C2.25(Q8:3D6), C6.74(C8:C22), (C2xDic3).45D4, C2.D24.14C2, C22.222(S3xD4), C6.38(C22:Q8), C12.169(C4oD4), (C2xC12).287C23, (C2xC24).289C22, C2.15(D6:Q8), (C2xD12).79C22, C2.25(Q8.7D6), C4:Dic3.115C22, (C4xDic3).33C22, (C3xC4.Q8):20C2, (C2xC6).292(C2xD4), (C2xC3:C8).64C22, (C3xC4:C4).80C22, (C2xC4).390(C22xS3), SmallGroup(192,430)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12.Q8
C1C3C6C2xC6C2xC12C2xD12Dic3:5D4 — D12.Q8
C3C6C2xC12 — D12.Q8
C1C22C2xC4C4.Q8

Generators and relations for D12.Q8
 G = < a,b,c,d | a12=b2=1, c4=a6, d2=a9c2, bab=a-1, ac=ca, dad-1=a7, cbc-1=a3b, bd=db, dcd-1=c3 >

Subgroups: 320 in 102 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, C12, D6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C2xD4, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C2xDic3, C2xC12, C2xC12, C22xS3, D4:C4, C4:C8, C4.Q8, C2.D8, C4xD4, C42.C2, C2xC3:C8, C4xDic3, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C3xC4:C4, C2xC24, S3xC2xC4, C2xD12, D4.Q8, C6.Q16, C6.D8, Dic3:C8, C2.D24, C3xC4.Q8, C4.Dic6, Dic3:5D4, D12.Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2xD4, C2xQ8, C4oD4, C22xS3, C22:Q8, C4oD8, C8:C22, C4oD12, S3xD4, S3xQ8, D4.Q8, D6:Q8, Q8:3D6, Q8.7D6, D12.Q8

Smallest permutation representation of D12.Q8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 96)(2 95)(3 94)(4 93)(5 92)(6 91)(7 90)(8 89)(9 88)(10 87)(11 86)(12 85)(13 37)(14 48)(15 47)(16 46)(17 45)(18 44)(19 43)(20 42)(21 41)(22 40)(23 39)(24 38)(25 55)(26 54)(27 53)(28 52)(29 51)(30 50)(31 49)(32 60)(33 59)(34 58)(35 57)(36 56)(61 74)(62 73)(63 84)(64 83)(65 82)(66 81)(67 80)(68 79)(69 78)(70 77)(71 76)(72 75)
(1 54 91 36 7 60 85 30)(2 55 92 25 8 49 86 31)(3 56 93 26 9 50 87 32)(4 57 94 27 10 51 88 33)(5 58 95 28 11 52 89 34)(6 59 96 29 12 53 90 35)(13 67 42 76 19 61 48 82)(14 68 43 77 20 62 37 83)(15 69 44 78 21 63 38 84)(16 70 45 79 22 64 39 73)(17 71 46 80 23 65 40 74)(18 72 47 81 24 66 41 75)
(1 14 88 40)(2 21 89 47)(3 16 90 42)(4 23 91 37)(5 18 92 44)(6 13 93 39)(7 20 94 46)(8 15 95 41)(9 22 96 48)(10 17 85 43)(11 24 86 38)(12 19 87 45)(25 63 58 81)(26 70 59 76)(27 65 60 83)(28 72 49 78)(29 67 50 73)(30 62 51 80)(31 69 52 75)(32 64 53 82)(33 71 54 77)(34 66 55 84)(35 61 56 79)(36 68 57 74)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,37)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,38)(25,55)(26,54)(27,53)(28,52)(29,51)(30,50)(31,49)(32,60)(33,59)(34,58)(35,57)(36,56)(61,74)(62,73)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75), (1,54,91,36,7,60,85,30)(2,55,92,25,8,49,86,31)(3,56,93,26,9,50,87,32)(4,57,94,27,10,51,88,33)(5,58,95,28,11,52,89,34)(6,59,96,29,12,53,90,35)(13,67,42,76,19,61,48,82)(14,68,43,77,20,62,37,83)(15,69,44,78,21,63,38,84)(16,70,45,79,22,64,39,73)(17,71,46,80,23,65,40,74)(18,72,47,81,24,66,41,75), (1,14,88,40)(2,21,89,47)(3,16,90,42)(4,23,91,37)(5,18,92,44)(6,13,93,39)(7,20,94,46)(8,15,95,41)(9,22,96,48)(10,17,85,43)(11,24,86,38)(12,19,87,45)(25,63,58,81)(26,70,59,76)(27,65,60,83)(28,72,49,78)(29,67,50,73)(30,62,51,80)(31,69,52,75)(32,64,53,82)(33,71,54,77)(34,66,55,84)(35,61,56,79)(36,68,57,74)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,37)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,38)(25,55)(26,54)(27,53)(28,52)(29,51)(30,50)(31,49)(32,60)(33,59)(34,58)(35,57)(36,56)(61,74)(62,73)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75), (1,54,91,36,7,60,85,30)(2,55,92,25,8,49,86,31)(3,56,93,26,9,50,87,32)(4,57,94,27,10,51,88,33)(5,58,95,28,11,52,89,34)(6,59,96,29,12,53,90,35)(13,67,42,76,19,61,48,82)(14,68,43,77,20,62,37,83)(15,69,44,78,21,63,38,84)(16,70,45,79,22,64,39,73)(17,71,46,80,23,65,40,74)(18,72,47,81,24,66,41,75), (1,14,88,40)(2,21,89,47)(3,16,90,42)(4,23,91,37)(5,18,92,44)(6,13,93,39)(7,20,94,46)(8,15,95,41)(9,22,96,48)(10,17,85,43)(11,24,86,38)(12,19,87,45)(25,63,58,81)(26,70,59,76)(27,65,60,83)(28,72,49,78)(29,67,50,73)(30,62,51,80)(31,69,52,75)(32,64,53,82)(33,71,54,77)(34,66,55,84)(35,61,56,79)(36,68,57,74) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,96),(2,95),(3,94),(4,93),(5,92),(6,91),(7,90),(8,89),(9,88),(10,87),(11,86),(12,85),(13,37),(14,48),(15,47),(16,46),(17,45),(18,44),(19,43),(20,42),(21,41),(22,40),(23,39),(24,38),(25,55),(26,54),(27,53),(28,52),(29,51),(30,50),(31,49),(32,60),(33,59),(34,58),(35,57),(36,56),(61,74),(62,73),(63,84),(64,83),(65,82),(66,81),(67,80),(68,79),(69,78),(70,77),(71,76),(72,75)], [(1,54,91,36,7,60,85,30),(2,55,92,25,8,49,86,31),(3,56,93,26,9,50,87,32),(4,57,94,27,10,51,88,33),(5,58,95,28,11,52,89,34),(6,59,96,29,12,53,90,35),(13,67,42,76,19,61,48,82),(14,68,43,77,20,62,37,83),(15,69,44,78,21,63,38,84),(16,70,45,79,22,64,39,73),(17,71,46,80,23,65,40,74),(18,72,47,81,24,66,41,75)], [(1,14,88,40),(2,21,89,47),(3,16,90,42),(4,23,91,37),(5,18,92,44),(6,13,93,39),(7,20,94,46),(8,15,95,41),(9,22,96,48),(10,17,85,43),(11,24,86,38),(12,19,87,45),(25,63,58,81),(26,70,59,76),(27,65,60,83),(28,72,49,78),(29,67,50,73),(30,62,51,80),(31,69,52,75),(32,64,53,82),(33,71,54,77),(34,66,55,84),(35,61,56,79),(36,68,57,74)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222223444444444666888812121212121224242424
size111112122224466812242224412124488884444

33 irreducible representations

dim111111112222222244444
type+++++++++-++++-++
imageC1C2C2C2C2C2C2C2S3Q8D4D6D6C4oD4C4oD8C4oD12C8:C22S3xQ8S3xD4Q8:3D6Q8.7D6
kernelD12.Q8C6.Q16C6.D8Dic3:C8C2.D24C3xC4.Q8C4.Dic6Dic3:5D4C4.Q8D12C2xDic3C4:C4C2xC8C12C6C4C6C4C22C2C2
# reps111111111222124411122

Matrix representation of D12.Q8 in GL6(F73)

0720000
100000
0007200
0017200
0000720
0000072
,
7200000
010000
0017200
0007200
0000720
0000631
,
67670000
6670000
001000
000100
0000583
00004715
,
4600000
0270000
001000
000100
0000460
0000046

G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,72,63,0,0,0,0,0,1],[67,6,0,0,0,0,67,67,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,58,47,0,0,0,0,3,15],[46,0,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,0,0,0,0,0,46] >;

D12.Q8 in GAP, Magma, Sage, TeX

D_{12}.Q_8
% in TeX

G:=Group("D12.Q8");
// GroupNames label

G:=SmallGroup(192,430);
// by ID

G=gap.SmallGroup(192,430);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,555,268,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^4=a^6,d^2=a^9*c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,c*b*c^-1=a^3*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<