Copied to
clipboard

G = D6:6M4(2)  order 192 = 26·3

2nd semidirect product of D6 and M4(2) acting via M4(2)/C2xC4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:6M4(2), (C2xC8):20D6, D6:C8:37C2, C4.88(C2xD12), (C2xC24):35C22, C4.38(D6:C4), C12.306(C2xD4), (C2xC4).151D12, (C2xC12).170D4, (C2xM4(2)):6S3, (S3xC23).7C4, C23.59(C4xS3), (C6xM4(2)):16C2, C3:2(C24.4C4), (C22xC4).365D6, C2.20(S3xM4(2)), C6.31(C2xM4(2)), C12.25(C22:C4), (C2xC12).866C23, C22.27(D6:C4), (C22xDic3).16C4, (C22xC12).185C22, (S3xC2xC4).9C4, (C2xC3:C8):28C22, C2.27(C2xD6:C4), (S3xC22xC4).2C2, (C2xC4).159(C4xS3), C4.132(C2xC3:D4), C6.55(C2xC22:C4), C22.145(S3xC2xC4), (C2xC12).105(C2xC4), (S3xC2xC4).284C22, (C2xC4.Dic3):14C2, (C22xC6).66(C2xC4), (C2xC4).195(C3:D4), (C2xC6).19(C22:C4), (C22xS3).63(C2xC4), (C2xC4).808(C22xS3), (C2xC6).136(C22xC4), (C2xDic3).102(C2xC4), SmallGroup(192,685)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D6:6M4(2)
C1C3C6C12C2xC12S3xC2xC4S3xC22xC4 — D6:6M4(2)
C3C2xC6 — D6:6M4(2)
C1C2xC4C2xM4(2)

Generators and relations for D6:6M4(2)
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=a3b, bd=db, dcd=c5 >

Subgroups: 504 in 190 conjugacy classes, 67 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, S3, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, C23, C23, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C24, C3:C8, C24, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C22:C8, C2xM4(2), C2xM4(2), C23xC4, C2xC3:C8, C4.Dic3, C2xC24, C3xM4(2), S3xC2xC4, S3xC2xC4, C22xDic3, C22xC12, S3xC23, C24.4C4, D6:C8, C2xC4.Dic3, C6xM4(2), S3xC22xC4, D6:6M4(2)
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, M4(2), C22xC4, C2xD4, C4xS3, D12, C3:D4, C22xS3, C2xC22:C4, C2xM4(2), D6:C4, S3xC2xC4, C2xD12, C2xC3:D4, C24.4C4, S3xM4(2), C2xD6:C4, D6:6M4(2)

Smallest permutation representation of D6:6M4(2)
On 48 points
Generators in S48
(1 25 47 16 23 36)(2 26 48 9 24 37)(3 27 41 10 17 38)(4 28 42 11 18 39)(5 29 43 12 19 40)(6 30 44 13 20 33)(7 31 45 14 21 34)(8 32 46 15 22 35)
(1 36)(2 48)(3 38)(4 42)(5 40)(6 44)(7 34)(8 46)(9 37)(10 41)(11 39)(12 43)(13 33)(14 45)(15 35)(16 47)(17 27)(19 29)(21 31)(23 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(26 30)(28 32)(33 37)(35 39)(42 46)(44 48)

G:=sub<Sym(48)| (1,25,47,16,23,36)(2,26,48,9,24,37)(3,27,41,10,17,38)(4,28,42,11,18,39)(5,29,43,12,19,40)(6,30,44,13,20,33)(7,31,45,14,21,34)(8,32,46,15,22,35), (1,36)(2,48)(3,38)(4,42)(5,40)(6,44)(7,34)(8,46)(9,37)(10,41)(11,39)(12,43)(13,33)(14,45)(15,35)(16,47)(17,27)(19,29)(21,31)(23,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(42,46)(44,48)>;

G:=Group( (1,25,47,16,23,36)(2,26,48,9,24,37)(3,27,41,10,17,38)(4,28,42,11,18,39)(5,29,43,12,19,40)(6,30,44,13,20,33)(7,31,45,14,21,34)(8,32,46,15,22,35), (1,36)(2,48)(3,38)(4,42)(5,40)(6,44)(7,34)(8,46)(9,37)(10,41)(11,39)(12,43)(13,33)(14,45)(15,35)(16,47)(17,27)(19,29)(21,31)(23,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(42,46)(44,48) );

G=PermutationGroup([[(1,25,47,16,23,36),(2,26,48,9,24,37),(3,27,41,10,17,38),(4,28,42,11,18,39),(5,29,43,12,19,40),(6,30,44,13,20,33),(7,31,45,14,21,34),(8,32,46,15,22,35)], [(1,36),(2,48),(3,38),(4,42),(5,40),(6,44),(7,34),(8,46),(9,37),(10,41),(11,39),(12,43),(13,33),(14,45),(15,35),(16,47),(17,27),(19,29),(21,31),(23,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(26,30),(28,32),(33,37),(35,39),(42,46),(44,48)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A···24H
order122222222234444444444666668888888812121212121224···24
size111122666621111226666222444444121212122222444···4

48 irreducible representations

dim111111112222222224
type++++++++++
imageC1C2C2C2C2C4C4C4S3D4D6D6M4(2)C4xS3D12C3:D4C4xS3S3xM4(2)
kernelD6:6M4(2)D6:C8C2xC4.Dic3C6xM4(2)S3xC22xC4S3xC2xC4C22xDic3S3xC23C2xM4(2)C2xC12C2xC8C22xC4D6C2xC4C2xC4C2xC4C23C2
# reps141114221421824424

Matrix representation of D6:6M4(2) in GL4(F73) generated by

72000
07200
0001
00721
,
72000
0100
00721
0001
,
02700
72000
003013
006043
,
72000
0100
0010
0001
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,0,72,0,0,1,1],[72,0,0,0,0,1,0,0,0,0,72,0,0,0,1,1],[0,72,0,0,27,0,0,0,0,0,30,60,0,0,13,43],[72,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] >;

D6:6M4(2) in GAP, Magma, Sage, TeX

D_6\rtimes_6M_4(2)
% in TeX

G:=Group("D6:6M4(2)");
// GroupNames label

G:=SmallGroup(192,685);
// by ID

G=gap.SmallGroup(192,685);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,422,387,58,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<