extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C4xS3) = C23.D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC4 | 48 | 8- | (C2xC4).1(C4xS3) | 192,32 |
(C2xC4).2(C4xS3) = C23.2D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC4 | 24 | 8+ | (C2xC4).2(C4xS3) | 192,33 |
(C2xC4).3(C4xS3) = (C2xC4).D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC4 | 48 | 8+ | (C2xC4).3(C4xS3) | 192,36 |
(C2xC4).4(C4xS3) = (C2xC12).D4 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC4 | 48 | 8- | (C2xC4).4(C4xS3) | 192,37 |
(C2xC4).5(C4xS3) = C23:C4:5S3 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC4 | 48 | 8- | (C2xC4).5(C4xS3) | 192,299 |
(C2xC4).6(C4xS3) = S3xC4.10D4 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC4 | 48 | 8- | (C2xC4).6(C4xS3) | 192,309 |
(C2xC4).7(C4xS3) = M4(2).21D6 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC4 | 48 | 8+ | (C2xC4).7(C4xS3) | 192,310 |
(C2xC4).8(C4xS3) = C6.C4wrC2 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).8(C4xS3) | 192,10 |
(C2xC4).9(C4xS3) = C4:Dic3:C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).9(C4xS3) | 192,11 |
(C2xC4).10(C4xS3) = C42.D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).10(C4xS3) | 192,23 |
(C2xC4).11(C4xS3) = C42.2D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).11(C4xS3) | 192,24 |
(C2xC4).12(C4xS3) = C23.35D12 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).12(C4xS3) | 192,26 |
(C2xC4).13(C4xS3) = C22.2D24 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).13(C4xS3) | 192,29 |
(C2xC4).14(C4xS3) = C4.Dic12 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).14(C4xS3) | 192,40 |
(C2xC4).15(C4xS3) = C12.47D8 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).15(C4xS3) | 192,41 |
(C2xC4).16(C4xS3) = C4.D24 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).16(C4xS3) | 192,44 |
(C2xC4).17(C4xS3) = C12.2D8 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).17(C4xS3) | 192,45 |
(C2xC4).18(C4xS3) = C12.(C4:C4) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).18(C4xS3) | 192,89 |
(C2xC4).19(C4xS3) = (C2xC12).Q8 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).19(C4xS3) | 192,92 |
(C2xC4).20(C4xS3) = M4(2):Dic3 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).20(C4xS3) | 192,113 |
(C2xC4).21(C4xS3) = (C2xC24):C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).21(C4xS3) | 192,115 |
(C2xC4).22(C4xS3) = (C2xC12):Q8 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).22(C4xS3) | 192,205 |
(C2xC4).23(C4xS3) = C6.(C4xQ8) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).23(C4xS3) | 192,206 |
(C2xC4).24(C4xS3) = C2.(C4xD12) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).24(C4xS3) | 192,212 |
(C2xC4).25(C4xS3) = C2.(C4xDic6) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).25(C4xS3) | 192,213 |
(C2xC4).26(C4xS3) = Dic3:C4:C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).26(C4xS3) | 192,214 |
(C2xC4).27(C4xS3) = D6:C4:3C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).27(C4xS3) | 192,229 |
(C2xC4).28(C4xS3) = C24:Q8 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).28(C4xS3) | 192,260 |
(C2xC4).29(C4xS3) = C8:9D12 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).29(C4xS3) | 192,265 |
(C2xC4).30(C4xS3) = C24:C4:C2 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).30(C4xS3) | 192,279 |
(C2xC4).31(C4xS3) = D6:C8:C2 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).31(C4xS3) | 192,286 |
(C2xC4).32(C4xS3) = D6:2M4(2) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).32(C4xS3) | 192,287 |
(C2xC4).33(C4xS3) = Dic3:M4(2) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).33(C4xS3) | 192,288 |
(C2xC4).34(C4xS3) = C42.27D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).34(C4xS3) | 192,387 |
(C2xC4).35(C4xS3) = D6:3M4(2) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).35(C4xS3) | 192,395 |
(C2xC4).36(C4xS3) = C42.30D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).36(C4xS3) | 192,398 |
(C2xC4).37(C4xS3) = C42.31D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).37(C4xS3) | 192,399 |
(C2xC4).38(C4xS3) = C4:C4.225D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).38(C4xS3) | 192,523 |
(C2xC4).39(C4xS3) = C4oD12:C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).39(C4xS3) | 192,525 |
(C2xC4).40(C4xS3) = Dic3:(C4:C4) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).40(C4xS3) | 192,535 |
(C2xC4).41(C4xS3) = C6.67(C4xD4) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).41(C4xS3) | 192,537 |
(C2xC4).42(C4xS3) = D6:C4:7C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).42(C4xS3) | 192,549 |
(C2xC4).43(C4xS3) = C4:C4.232D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).43(C4xS3) | 192,554 |
(C2xC4).44(C4xS3) = C4:C4:36D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).44(C4xS3) | 192,560 |
(C2xC4).45(C4xS3) = C4:C4.237D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).45(C4xS3) | 192,563 |
(C2xC4).46(C4xS3) = C42:6D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).46(C4xS3) | 192,564 |
(C2xC4).47(C4xS3) = (C2xD12):13C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).47(C4xS3) | 192,565 |
(C2xC4).48(C4xS3) = C23.51D12 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).48(C4xS3) | 192,679 |
(C2xC4).49(C4xS3) = C23.8Dic6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).49(C4xS3) | 192,683 |
(C2xC4).50(C4xS3) = C24:D4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).50(C4xS3) | 192,686 |
(C2xC4).51(C4xS3) = C24:21D4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).51(C4xS3) | 192,687 |
(C2xC4).52(C4xS3) = C2xC12.46D4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).52(C4xS3) | 192,689 |
(C2xC4).53(C4xS3) = C23.53D12 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).53(C4xS3) | 192,690 |
(C2xC4).54(C4xS3) = C23.54D12 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).54(C4xS3) | 192,692 |
(C2xC4).55(C4xS3) = C2xC12.47D4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).55(C4xS3) | 192,695 |
(C2xC4).56(C4xS3) = M4(2):24D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).56(C4xS3) | 192,698 |
(C2xC4).57(C4xS3) = C42.87D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).57(C4xS3) | 192,1075 |
(C2xC4).58(C4xS3) = M4(2):26D6 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).58(C4xS3) | 192,1304 |
(C2xC4).59(C4xS3) = C6.(C4xD4) | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).59(C4xS3) | 192,211 |
(C2xC4).60(C4xS3) = D6:C4:5C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).60(C4xS3) | 192,228 |
(C2xC4).61(C4xS3) = D6.4C42 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).61(C4xS3) | 192,267 |
(C2xC4).62(C4xS3) = C42.185D6 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).62(C4xS3) | 192,268 |
(C2xC4).63(C4xS3) = C3:D4:C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).63(C4xS3) | 192,284 |
(C2xC4).64(C4xS3) = C3:C8:26D4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).64(C4xS3) | 192,289 |
(C2xC4).65(C4xS3) = D12:2C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).65(C4xS3) | 192,42 |
(C2xC4).66(C4xS3) = Dic6:2C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).66(C4xS3) | 192,43 |
(C2xC4).67(C4xS3) = Dic6.C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | 4 | (C2xC4).67(C4xS3) | 192,74 |
(C2xC4).68(C4xS3) = C12.2C42 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).68(C4xS3) | 192,91 |
(C2xC4).69(C4xS3) = C12.3C42 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).69(C4xS3) | 192,114 |
(C2xC4).70(C4xS3) = Dic6:C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).70(C4xS3) | 192,389 |
(C2xC4).71(C4xS3) = C42.198D6 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).71(C4xS3) | 192,390 |
(C2xC4).72(C4xS3) = D12:C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).72(C4xS3) | 192,393 |
(C2xC4).73(C4xS3) = C12:2M4(2) | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).73(C4xS3) | 192,397 |
(C2xC4).74(C4xS3) = C16.12D6 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | 4 | (C2xC4).74(C4xS3) | 192,466 |
(C2xC4).75(C4xS3) = C2xC6.D8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).75(C4xS3) | 192,524 |
(C2xC4).76(C4xS3) = C2xC6.SD16 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).76(C4xS3) | 192,528 |
(C2xC4).77(C4xS3) = C12:(C4:C4) | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).77(C4xS3) | 192,531 |
(C2xC4).78(C4xS3) = C4.(D6:C4) | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).78(C4xS3) | 192,532 |
(C2xC4).79(C4xS3) = (C2xD12):10C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).79(C4xS3) | 192,547 |
(C2xC4).80(C4xS3) = C12.5C42 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).80(C4xS3) | 192,556 |
(C2xC4).81(C4xS3) = C4.(C2xD12) | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).81(C4xS3) | 192,561 |
(C2xC4).82(C4xS3) = C12.88(C2xQ8) | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).82(C4xS3) | 192,678 |
(C2xC4).83(C4xS3) = C12.7C42 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).83(C4xS3) | 192,681 |
(C2xC4).84(C4xS3) = D6:C8:40C2 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).84(C4xS3) | 192,688 |
(C2xC4).85(C4xS3) = C2xD12:C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).85(C4xS3) | 192,697 |
(C2xC4).86(C4xS3) = C2xDic6:C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).86(C4xS3) | 192,1055 |
(C2xC4).87(C4xS3) = C2xD12.C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).87(C4xS3) | 192,1303 |
(C2xC4).88(C4xS3) = D6.C42 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).88(C4xS3) | 192,248 |
(C2xC4).89(C4xS3) = C42.243D6 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).89(C4xS3) | 192,249 |
(C2xC4).90(C4xS3) = C4xDic3:C4 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).90(C4xS3) | 192,490 |
(C2xC4).91(C4xS3) = (C2xC42).6S3 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).91(C4xS3) | 192,492 |
(C2xC4).92(C4xS3) = (C2xC42):3S3 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).92(C4xS3) | 192,499 |
(C2xC4).93(C4xS3) = C8xC3:D4 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).93(C4xS3) | 192,668 |
(C2xC4).94(C4xS3) = C24:33D4 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).94(C4xS3) | 192,670 |
(C2xC4).95(C4xS3) = C4.8Dic12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).95(C4xS3) | 192,15 |
(C2xC4).96(C4xS3) = C4.17D24 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).96(C4xS3) | 192,18 |
(C2xC4).97(C4xS3) = D12.C8 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | 2 | (C2xC4).97(C4xS3) | 192,67 |
(C2xC4).98(C4xS3) = C12.8C42 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).98(C4xS3) | 192,82 |
(C2xC4).99(C4xS3) = C12.9C42 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).99(C4xS3) | 192,110 |
(C2xC4).100(C4xS3) = C12.10C42 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).100(C4xS3) | 192,111 |
(C2xC4).101(C4xS3) = C8xDic6 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).101(C4xS3) | 192,237 |
(C2xC4).102(C4xS3) = C24:12Q8 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).102(C4xS3) | 192,238 |
(C2xC4).103(C4xS3) = C8xD12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).103(C4xS3) | 192,245 |
(C2xC4).104(C4xS3) = C8:6D12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).104(C4xS3) | 192,247 |
(C2xC4).105(C4xS3) = D12.4C8 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | 2 | (C2xC4).105(C4xS3) | 192,460 |
(C2xC4).106(C4xS3) = C4xC4.Dic3 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).106(C4xS3) | 192,481 |
(C2xC4).107(C4xS3) = C2xC42:4S3 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).107(C4xS3) | 192,486 |
(C2xC4).108(C4xS3) = C12:4(C4:C4) | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).108(C4xS3) | 192,487 |
(C2xC4).109(C4xS3) = (C2xDic6):7C4 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).109(C4xS3) | 192,488 |
(C2xC4).110(C4xS3) = C4xC4:Dic3 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).110(C4xS3) | 192,493 |
(C2xC4).111(C4xS3) = (C2xC4):6D12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).111(C4xS3) | 192,498 |
(C2xC4).112(C4xS3) = C12.12C42 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).112(C4xS3) | 192,660 |
(C2xC4).113(C4xS3) = Dic3:C8:C2 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).113(C4xS3) | 192,661 |
(C2xC4).114(C4xS3) = C2xC2.Dic12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).114(C4xS3) | 192,662 |
(C2xC4).115(C4xS3) = (C22xC8):7S3 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).115(C4xS3) | 192,669 |
(C2xC4).116(C4xS3) = C2xC2.D24 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).116(C4xS3) | 192,671 |
(C2xC4).117(C4xS3) = C23.28D12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).117(C4xS3) | 192,672 |
(C2xC4).118(C4xS3) = C2xC4xDic6 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).118(C4xS3) | 192,1026 |
(C2xC4).119(C4xS3) = C2xC8oD12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).119(C4xS3) | 192,1297 |
(C2xC4).120(C4xS3) = Dic3.5C42 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).120(C4xS3) | 192,207 |
(C2xC4).121(C4xS3) = Dic3:C42 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).121(C4xS3) | 192,208 |
(C2xC4).122(C4xS3) = C3:(C42:8C4) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).122(C4xS3) | 192,209 |
(C2xC4).123(C4xS3) = C3:(C42:5C4) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).123(C4xS3) | 192,210 |
(C2xC4).124(C4xS3) = C22.58(S3xD4) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).124(C4xS3) | 192,223 |
(C2xC4).125(C4xS3) = D6:(C4:C4) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).125(C4xS3) | 192,226 |
(C2xC4).126(C4xS3) = S3xC8:C4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).126(C4xS3) | 192,263 |
(C2xC4).127(C4xS3) = C42.182D6 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).127(C4xS3) | 192,264 |
(C2xC4).128(C4xS3) = Dic3:5M4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).128(C4xS3) | 192,266 |
(C2xC4).129(C4xS3) = Dic3.5M4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).129(C4xS3) | 192,277 |
(C2xC4).130(C4xS3) = Dic3.M4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).130(C4xS3) | 192,278 |
(C2xC4).131(C4xS3) = S3xC22:C8 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).131(C4xS3) | 192,283 |
(C2xC4).132(C4xS3) = D6:M4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).132(C4xS3) | 192,285 |
(C2xC4).133(C4xS3) = C12.53D8 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).133(C4xS3) | 192,38 |
(C2xC4).134(C4xS3) = C12.39SD16 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).134(C4xS3) | 192,39 |
(C2xC4).135(C4xS3) = C24.97D4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).135(C4xS3) | 192,70 |
(C2xC4).136(C4xS3) = C48:C4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).136(C4xS3) | 192,71 |
(C2xC4).137(C4xS3) = C8.25D12 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).137(C4xS3) | 192,73 |
(C2xC4).138(C4xS3) = C12.C42 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).138(C4xS3) | 192,88 |
(C2xC4).139(C4xS3) = C42:3Dic3 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).139(C4xS3) | 192,90 |
(C2xC4).140(C4xS3) = C12.20C42 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).140(C4xS3) | 192,116 |
(C2xC4).141(C4xS3) = C12.4C42 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).141(C4xS3) | 192,117 |
(C2xC4).142(C4xS3) = M4(2):4Dic3 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).142(C4xS3) | 192,118 |
(C2xC4).143(C4xS3) = C12.21C42 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).143(C4xS3) | 192,119 |
(C2xC4).144(C4xS3) = S3xC4:C8 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).144(C4xS3) | 192,391 |
(C2xC4).145(C4xS3) = C42.200D6 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).145(C4xS3) | 192,392 |
(C2xC4).146(C4xS3) = C42.202D6 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).146(C4xS3) | 192,394 |
(C2xC4).147(C4xS3) = C12:M4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).147(C4xS3) | 192,396 |
(C2xC4).148(C4xS3) = S3xM5(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).148(C4xS3) | 192,465 |
(C2xC4).149(C4xS3) = C2xC6.Q16 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).149(C4xS3) | 192,521 |
(C2xC4).150(C4xS3) = C2xC12.Q8 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).150(C4xS3) | 192,522 |
(C2xC4).151(C4xS3) = Dic3xC4:C4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).151(C4xS3) | 192,533 |
(C2xC4).152(C4xS3) = (C4xDic3):8C4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).152(C4xS3) | 192,534 |
(C2xC4).153(C4xS3) = (C4xDic3):9C4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).153(C4xS3) | 192,536 |
(C2xC4).154(C4xS3) = C4:(D6:C4) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).154(C4xS3) | 192,546 |
(C2xC4).155(C4xS3) = C4:C4.234D6 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).155(C4xS3) | 192,557 |
(C2xC4).156(C4xS3) = Dic3xM4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).156(C4xS3) | 192,676 |
(C2xC4).157(C4xS3) = Dic3:4M4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).157(C4xS3) | 192,677 |
(C2xC4).158(C4xS3) = C2xC12.53D4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).158(C4xS3) | 192,682 |
(C2xC4).159(C4xS3) = D6:6M4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).159(C4xS3) | 192,685 |
(C2xC4).160(C4xS3) = M4(2).31D6 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).160(C4xS3) | 192,691 |
(C2xC4).161(C4xS3) = C2xC4:C4:7S3 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).161(C4xS3) | 192,1061 |
(C2xC4).162(C4xS3) = C2xS3xM4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).162(C4xS3) | 192,1302 |
(C2xC4).163(C4xS3) = C8xC3:C8 | central extension (φ=1) | 192 | | (C2xC4).163(C4xS3) | 192,12 |
(C2xC4).164(C4xS3) = C42.279D6 | central extension (φ=1) | 192 | | (C2xC4).164(C4xS3) | 192,13 |
(C2xC4).165(C4xS3) = C24:C8 | central extension (φ=1) | 192 | | (C2xC4).165(C4xS3) | 192,14 |
(C2xC4).166(C4xS3) = Dic3xC16 | central extension (φ=1) | 192 | | (C2xC4).166(C4xS3) | 192,59 |
(C2xC4).167(C4xS3) = Dic3:C16 | central extension (φ=1) | 192 | | (C2xC4).167(C4xS3) | 192,60 |
(C2xC4).168(C4xS3) = C48:10C4 | central extension (φ=1) | 192 | | (C2xC4).168(C4xS3) | 192,61 |
(C2xC4).169(C4xS3) = D6:C16 | central extension (φ=1) | 96 | | (C2xC4).169(C4xS3) | 192,66 |
(C2xC4).170(C4xS3) = (C2xC12):3C8 | central extension (φ=1) | 192 | | (C2xC4).170(C4xS3) | 192,83 |
(C2xC4).171(C4xS3) = (C2xC24):5C4 | central extension (φ=1) | 192 | | (C2xC4).171(C4xS3) | 192,109 |
(C2xC4).172(C4xS3) = S3xC4xC8 | central extension (φ=1) | 96 | | (C2xC4).172(C4xS3) | 192,243 |
(C2xC4).173(C4xS3) = C42.282D6 | central extension (φ=1) | 96 | | (C2xC4).173(C4xS3) | 192,244 |
(C2xC4).174(C4xS3) = C4xC8:S3 | central extension (φ=1) | 96 | | (C2xC4).174(C4xS3) | 192,246 |
(C2xC4).175(C4xS3) = S3xC2xC16 | central extension (φ=1) | 96 | | (C2xC4).175(C4xS3) | 192,458 |
(C2xC4).176(C4xS3) = C2xD6.C8 | central extension (φ=1) | 96 | | (C2xC4).176(C4xS3) | 192,459 |
(C2xC4).177(C4xS3) = C2xC4xC3:C8 | central extension (φ=1) | 192 | | (C2xC4).177(C4xS3) | 192,479 |
(C2xC4).178(C4xS3) = C2xC42.S3 | central extension (φ=1) | 192 | | (C2xC4).178(C4xS3) | 192,480 |
(C2xC4).179(C4xS3) = Dic3xC42 | central extension (φ=1) | 192 | | (C2xC4).179(C4xS3) | 192,489 |
(C2xC4).180(C4xS3) = C42:6Dic3 | central extension (φ=1) | 192 | | (C2xC4).180(C4xS3) | 192,491 |
(C2xC4).181(C4xS3) = Dic3xC2xC8 | central extension (φ=1) | 192 | | (C2xC4).181(C4xS3) | 192,657 |
(C2xC4).182(C4xS3) = C2xDic3:C8 | central extension (φ=1) | 192 | | (C2xC4).182(C4xS3) | 192,658 |
(C2xC4).183(C4xS3) = C2xC24:C4 | central extension (φ=1) | 192 | | (C2xC4).183(C4xS3) | 192,659 |
(C2xC4).184(C4xS3) = C2xD6:C8 | central extension (φ=1) | 96 | | (C2xC4).184(C4xS3) | 192,667 |
(C2xC4).185(C4xS3) = C2xC42:2S3 | central extension (φ=1) | 96 | | (C2xC4).185(C4xS3) | 192,1031 |
(C2xC4).186(C4xS3) = S3xC22xC8 | central extension (φ=1) | 96 | | (C2xC4).186(C4xS3) | 192,1295 |
(C2xC4).187(C4xS3) = C22xC8:S3 | central extension (φ=1) | 96 | | (C2xC4).187(C4xS3) | 192,1296 |