Extensions 1→N→G→Q→1 with N=C3xQ8 and Q=D4

Direct product G=NxQ with N=C3xQ8 and Q=D4
dρLabelID
C3xD4xQ896C3xD4xQ8192,1438

Semidirect products G=N:Q with N=C3xQ8 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3xQ8):1D4 = Q8:3D12φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8):1D4192,365
(C3xQ8):2D4 = Q8:4D12φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8):2D4192,369
(C3xQ8):3D4 = Q8:5D12φ: D4/C2C22 ⊆ Out C3xQ8244+(C3xQ8):3D4192,381
(C3xQ8):4D4 = Dic3:5SD16φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8):4D4192,722
(C3xQ8):5D4 = D6:8SD16φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8):5D4192,729
(C3xQ8):6D4 = D12:7D4φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8):6D4192,731
(C3xQ8):7D4 = D12:18D4φ: D4/C2C22 ⊆ Out C3xQ8248+(C3xQ8):7D4192,757
(C3xQ8):8D4 = Q8:2D12φ: D4/C4C2 ⊆ Out C3xQ896(C3xQ8):8D4192,586
(C3xQ8):9D4 = Q8xD12φ: D4/C4C2 ⊆ Out C3xQ896(C3xQ8):9D4192,1134
(C3xQ8):10D4 = Q8:6D12φ: D4/C4C2 ⊆ Out C3xQ896(C3xQ8):10D4192,1135
(C3xQ8):11D4 = Q8:7D12φ: D4/C4C2 ⊆ Out C3xQ896(C3xQ8):11D4192,1136
(C3xQ8):12D4 = C3xC4:SD16φ: D4/C4C2 ⊆ Out C3xQ896(C3xQ8):12D4192,893
(C3xQ8):13D4 = (C3xQ8):13D4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):13D4192,786
(C3xQ8):14D4 = (C3xD4):14D4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):14D4192,797
(C3xQ8):15D4 = 2+ 1+4:6S3φ: D4/C22C2 ⊆ Out C3xQ8248+(C3xQ8):15D4192,800
(C3xQ8):16D4 = Q8xC3:D4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):16D4192,1374
(C3xQ8):17D4 = C6.452- 1+4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):17D4192,1376
(C3xQ8):18D4 = C6.1072- 1+4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):18D4192,1390
(C3xQ8):19D4 = C6.1482+ 1+4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):19D4192,1393
(C3xQ8):20D4 = C3xQ8:D4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):20D4192,881
(C3xQ8):21D4 = C3xD4:D4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8):21D4192,882
(C3xQ8):22D4 = C3xD4:4D4φ: D4/C22C2 ⊆ Out C3xQ8244(C3xQ8):22D4192,886
(C3xQ8):23D4 = C3xQ8:5D4φ: trivial image96(C3xQ8):23D4192,1437
(C3xQ8):24D4 = C3xQ8:6D4φ: trivial image96(C3xQ8):24D4192,1439

Non-split extensions G=N.Q with N=C3xQ8 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3xQ8).1D4 = Q8.11D12φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8).1D4192,367
(C3xQ8).2D4 = D6:Q16φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8).2D4192,368
(C3xQ8).3D4 = C42:5D6φ: D4/C2C22 ⊆ Out C3xQ8484(C3xQ8).3D4192,384
(C3xQ8).4D4 = Q8.14D12φ: D4/C2C22 ⊆ Out C3xQ8484-(C3xQ8).4D4192,385
(C3xQ8).5D4 = D4.10D12φ: D4/C2C22 ⊆ Out C3xQ8484(C3xQ8).5D4192,386
(C3xQ8).6D4 = (C3xQ8).D4φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8).6D4192,725
(C3xQ8).7D4 = Dic3:3Q16φ: D4/C2C22 ⊆ Out C3xQ8192(C3xQ8).7D4192,741
(C3xQ8).8D4 = (C2xQ16):S3φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8).8D4192,744
(C3xQ8).9D4 = D6:5Q16φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8).9D4192,745
(C3xQ8).10D4 = D12.17D4φ: D4/C2C22 ⊆ Out C3xQ896(C3xQ8).10D4192,746
(C3xQ8).11D4 = M4(2).D6φ: D4/C2C22 ⊆ Out C3xQ8488+(C3xQ8).11D4192,758
(C3xQ8).12D4 = M4(2).13D6φ: D4/C2C22 ⊆ Out C3xQ8488-(C3xQ8).12D4192,759
(C3xQ8).13D4 = D12.38D4φ: D4/C2C22 ⊆ Out C3xQ8488-(C3xQ8).13D4192,760
(C3xQ8).14D4 = D12.39D4φ: D4/C2C22 ⊆ Out C3xQ8488+(C3xQ8).14D4192,761
(C3xQ8).15D4 = M4(2).15D6φ: D4/C2C22 ⊆ Out C3xQ8488+(C3xQ8).15D4192,762
(C3xQ8).16D4 = M4(2).16D6φ: D4/C2C22 ⊆ Out C3xQ8968-(C3xQ8).16D4192,763
(C3xQ8).17D4 = D12.40D4φ: D4/C2C22 ⊆ Out C3xQ8488-(C3xQ8).17D4192,764
(C3xQ8).18D4 = Q8.6D12φ: D4/C4C2 ⊆ Out C3xQ896(C3xQ8).18D4192,587
(C3xQ8).19D4 = C12:7Q16φ: D4/C4C2 ⊆ Out C3xQ8192(C3xQ8).19D4192,590
(C3xQ8).20D4 = Q8.8D12φ: D4/C4C2 ⊆ Out C3xQ8484(C3xQ8).20D4192,700
(C3xQ8).21D4 = Q8.9D12φ: D4/C4C2 ⊆ Out C3xQ8484+(C3xQ8).21D4192,701
(C3xQ8).22D4 = Q8.10D12φ: D4/C4C2 ⊆ Out C3xQ8964-(C3xQ8).22D4192,702
(C3xQ8).23D4 = D4.11D12φ: D4/C4C2 ⊆ Out C3xQ8484(C3xQ8).23D4192,1310
(C3xQ8).24D4 = D4.12D12φ: D4/C4C2 ⊆ Out C3xQ8484+(C3xQ8).24D4192,1311
(C3xQ8).25D4 = D4.13D12φ: D4/C4C2 ⊆ Out C3xQ8964-(C3xQ8).25D4192,1312
(C3xQ8).26D4 = C3xC4:2Q16φ: D4/C4C2 ⊆ Out C3xQ8192(C3xQ8).26D4192,895
(C3xQ8).27D4 = C3xQ8.D4φ: D4/C4C2 ⊆ Out C3xQ896(C3xQ8).27D4192,897
(C3xQ8).28D4 = C3xD4.3D4φ: D4/C4C2 ⊆ Out C3xQ8484(C3xQ8).28D4192,904
(C3xQ8).29D4 = C3xD4.4D4φ: D4/C4C2 ⊆ Out C3xQ8484(C3xQ8).29D4192,905
(C3xQ8).30D4 = C3xD4.5D4φ: D4/C4C2 ⊆ Out C3xQ8964(C3xQ8).30D4192,906
(C3xQ8).31D4 = (C2xC6):8Q16φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8).31D4192,787
(C3xQ8).32D4 = (C3xD4).32D4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8).32D4192,798
(C3xQ8).33D4 = 2+ 1+4.4S3φ: D4/C22C2 ⊆ Out C3xQ8488-(C3xQ8).33D4192,801
(C3xQ8).34D4 = 2- 1+4:4S3φ: D4/C22C2 ⊆ Out C3xQ8488+(C3xQ8).34D4192,804
(C3xQ8).35D4 = 2- 1+4.2S3φ: D4/C22C2 ⊆ Out C3xQ8488-(C3xQ8).35D4192,805
(C3xQ8).36D4 = D12.32C23φ: D4/C22C2 ⊆ Out C3xQ8488+(C3xQ8).36D4192,1394
(C3xQ8).37D4 = D12.33C23φ: D4/C22C2 ⊆ Out C3xQ8488-(C3xQ8).37D4192,1395
(C3xQ8).38D4 = D12.34C23φ: D4/C22C2 ⊆ Out C3xQ8488+(C3xQ8).38D4192,1396
(C3xQ8).39D4 = D12.35C23φ: D4/C22C2 ⊆ Out C3xQ8968-(C3xQ8).39D4192,1397
(C3xQ8).40D4 = C3xC22:Q16φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8).40D4192,884
(C3xQ8).41D4 = C3xD4.7D4φ: D4/C22C2 ⊆ Out C3xQ896(C3xQ8).41D4192,885
(C3xQ8).42D4 = C3xD4.8D4φ: D4/C22C2 ⊆ Out C3xQ8484(C3xQ8).42D4192,887
(C3xQ8).43D4 = C3xD4.9D4φ: D4/C22C2 ⊆ Out C3xQ8484(C3xQ8).43D4192,888
(C3xQ8).44D4 = C3xD4.10D4φ: D4/C22C2 ⊆ Out C3xQ8484(C3xQ8).44D4192,889
(C3xQ8).45D4 = C3xD4oD8φ: trivial image484(C3xQ8).45D4192,1465
(C3xQ8).46D4 = C3xD4oSD16φ: trivial image484(C3xQ8).46D4192,1466
(C3xQ8).47D4 = C3xQ8oD8φ: trivial image964(C3xQ8).47D4192,1467

׿
x
:
Z
F
o
wr
Q
<