Extensions 1→N→G→Q→1 with N=C3×D4 and Q=D4

Direct product G=N×Q with N=C3×D4 and Q=D4
dρLabelID
C3×D4248C3xD4^2192,1434

Semidirect products G=N:Q with N=C3×D4 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1D4 = D4⋊D12φ: D4/C2C22 ⊆ Out C3×D448(C3xD4):1D4192,332
(C3×D4)⋊2D4 = D43D12φ: D4/C2C22 ⊆ Out C3×D496(C3xD4):2D4192,340
(C3×D4)⋊3D4 = Q85D12φ: D4/C2C22 ⊆ Out C3×D4244+(C3xD4):3D4192,381
(C3×D4)⋊4D4 = Dic3⋊D8φ: D4/C2C22 ⊆ Out C3×D496(C3xD4):4D4192,709
(C3×D4)⋊5D4 = D12⋊D4φ: D4/C2C22 ⊆ Out C3×D448(C3xD4):5D4192,715
(C3×D4)⋊6D4 = Dic6⋊D4φ: D4/C2C22 ⊆ Out C3×D496(C3xD4):6D4192,717
(C3×D4)⋊7D4 = D1218D4φ: D4/C2C22 ⊆ Out C3×D4248+(C3xD4):7D4192,757
(C3×D4)⋊8D4 = C127D8φ: D4/C4C2 ⊆ Out C3×D496(C3xD4):8D4192,574
(C3×D4)⋊9D4 = D4×D12φ: D4/C4C2 ⊆ Out C3×D448(C3xD4):9D4192,1108
(C3×D4)⋊10D4 = D45D12φ: D4/C4C2 ⊆ Out C3×D448(C3xD4):10D4192,1113
(C3×D4)⋊11D4 = D46D12φ: D4/C4C2 ⊆ Out C3×D496(C3xD4):11D4192,1114
(C3×D4)⋊12D4 = C3×C4⋊D8φ: D4/C4C2 ⊆ Out C3×D496(C3xD4):12D4192,892
(C3×D4)⋊13D4 = (C2×C6)⋊8D8φ: D4/C22C2 ⊆ Out C3×D448(C3xD4):13D4192,776
(C3×D4)⋊14D4 = (C3×D4)⋊14D4φ: D4/C22C2 ⊆ Out C3×D496(C3xD4):14D4192,797
(C3×D4)⋊15D4 = 2+ 1+46S3φ: D4/C22C2 ⊆ Out C3×D4248+(C3xD4):15D4192,800
(C3×D4)⋊16D4 = D4×C3⋊D4φ: D4/C22C2 ⊆ Out C3×D448(C3xD4):16D4192,1360
(C3×D4)⋊17D4 = C24.53D6φ: D4/C22C2 ⊆ Out C3×D448(C3xD4):17D4192,1365
(C3×D4)⋊18D4 = C6.1042- 1+4φ: D4/C22C2 ⊆ Out C3×D496(C3xD4):18D4192,1383
(C3×D4)⋊19D4 = C6.1452+ 1+4φ: D4/C22C2 ⊆ Out C3×D448(C3xD4):19D4192,1388
(C3×D4)⋊20D4 = C3×C22⋊D8φ: D4/C22C2 ⊆ Out C3×D448(C3xD4):20D4192,880
(C3×D4)⋊21D4 = C3×D4⋊D4φ: D4/C22C2 ⊆ Out C3×D496(C3xD4):21D4192,882
(C3×D4)⋊22D4 = C3×D44D4φ: D4/C22C2 ⊆ Out C3×D4244(C3xD4):22D4192,886
(C3×D4)⋊23D4 = C3×D45D4φ: trivial image48(C3xD4):23D4192,1435
(C3×D4)⋊24D4 = C3×D46D4φ: trivial image96(C3xD4):24D4192,1436

Non-split extensions G=N.Q with N=C3×D4 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×D4).1D4 = D65SD16φ: D4/C2C22 ⊆ Out C3×D448(C3xD4).1D4192,335
(C3×D4).2D4 = D4.D12φ: D4/C2C22 ⊆ Out C3×D496(C3xD4).2D4192,342
(C3×D4).3D4 = C425D6φ: D4/C2C22 ⊆ Out C3×D4484(C3xD4).3D4192,384
(C3×D4).4D4 = Q8.14D12φ: D4/C2C22 ⊆ Out C3×D4484-(C3xD4).4D4192,385
(C3×D4).5D4 = D4.10D12φ: D4/C2C22 ⊆ Out C3×D4484(C3xD4).5D4192,386
(C3×D4).6D4 = (C6×D8).C2φ: D4/C2C22 ⊆ Out C3×D496(C3xD4).6D4192,712
(C3×D4).7D4 = Dic33SD16φ: D4/C2C22 ⊆ Out C3×D496(C3xD4).7D4192,721
(C3×D4).8D4 = (C3×D4).D4φ: D4/C2C22 ⊆ Out C3×D496(C3xD4).8D4192,724
(C3×D4).9D4 = D66SD16φ: D4/C2C22 ⊆ Out C3×D448(C3xD4).9D4192,728
(C3×D4).10D4 = Dic6.16D4φ: D4/C2C22 ⊆ Out C3×D496(C3xD4).10D4192,732
(C3×D4).11D4 = M4(2).D6φ: D4/C2C22 ⊆ Out C3×D4488+(C3xD4).11D4192,758
(C3×D4).12D4 = M4(2).13D6φ: D4/C2C22 ⊆ Out C3×D4488-(C3xD4).12D4192,759
(C3×D4).13D4 = D12.38D4φ: D4/C2C22 ⊆ Out C3×D4488-(C3xD4).13D4192,760
(C3×D4).14D4 = D12.39D4φ: D4/C2C22 ⊆ Out C3×D4488+(C3xD4).14D4192,761
(C3×D4).15D4 = M4(2).15D6φ: D4/C2C22 ⊆ Out C3×D4488+(C3xD4).15D4192,762
(C3×D4).16D4 = M4(2).16D6φ: D4/C2C22 ⊆ Out C3×D4968-(C3xD4).16D4192,763
(C3×D4).17D4 = D12.40D4φ: D4/C2C22 ⊆ Out C3×D4488-(C3xD4).17D4192,764
(C3×D4).18D4 = D4.1D12φ: D4/C4C2 ⊆ Out C3×D496(C3xD4).18D4192,575
(C3×D4).19D4 = D4.2D12φ: D4/C4C2 ⊆ Out C3×D496(C3xD4).19D4192,578
(C3×D4).20D4 = Q8.8D12φ: D4/C4C2 ⊆ Out C3×D4484(C3xD4).20D4192,700
(C3×D4).21D4 = Q8.9D12φ: D4/C4C2 ⊆ Out C3×D4484+(C3xD4).21D4192,701
(C3×D4).22D4 = Q8.10D12φ: D4/C4C2 ⊆ Out C3×D4964-(C3xD4).22D4192,702
(C3×D4).23D4 = D4.11D12φ: D4/C4C2 ⊆ Out C3×D4484(C3xD4).23D4192,1310
(C3×D4).24D4 = D4.12D12φ: D4/C4C2 ⊆ Out C3×D4484+(C3xD4).24D4192,1311
(C3×D4).25D4 = D4.13D12φ: D4/C4C2 ⊆ Out C3×D4964-(C3xD4).25D4192,1312
(C3×D4).26D4 = C3×D4.D4φ: D4/C4C2 ⊆ Out C3×D496(C3xD4).26D4192,894
(C3×D4).27D4 = C3×D4.2D4φ: D4/C4C2 ⊆ Out C3×D496(C3xD4).27D4192,896
(C3×D4).28D4 = C3×D4.3D4φ: D4/C4C2 ⊆ Out C3×D4484(C3xD4).28D4192,904
(C3×D4).29D4 = C3×D4.4D4φ: D4/C4C2 ⊆ Out C3×D4484(C3xD4).29D4192,905
(C3×D4).30D4 = C3×D4.5D4φ: D4/C4C2 ⊆ Out C3×D4964(C3xD4).30D4192,906
(C3×D4).31D4 = (C3×D4).31D4φ: D4/C22C2 ⊆ Out C3×D448(C3xD4).31D4192,777
(C3×D4).32D4 = (C3×D4).32D4φ: D4/C22C2 ⊆ Out C3×D496(C3xD4).32D4192,798
(C3×D4).33D4 = 2+ 1+4.4S3φ: D4/C22C2 ⊆ Out C3×D4488-(C3xD4).33D4192,801
(C3×D4).34D4 = 2- 1+44S3φ: D4/C22C2 ⊆ Out C3×D4488+(C3xD4).34D4192,804
(C3×D4).35D4 = 2- 1+4.2S3φ: D4/C22C2 ⊆ Out C3×D4488-(C3xD4).35D4192,805
(C3×D4).36D4 = D12.32C23φ: D4/C22C2 ⊆ Out C3×D4488+(C3xD4).36D4192,1394
(C3×D4).37D4 = D12.33C23φ: D4/C22C2 ⊆ Out C3×D4488-(C3xD4).37D4192,1395
(C3×D4).38D4 = D12.34C23φ: D4/C22C2 ⊆ Out C3×D4488+(C3xD4).38D4192,1396
(C3×D4).39D4 = D12.35C23φ: D4/C22C2 ⊆ Out C3×D4968-(C3xD4).39D4192,1397
(C3×D4).40D4 = C3×C22⋊SD16φ: D4/C22C2 ⊆ Out C3×D448(C3xD4).40D4192,883
(C3×D4).41D4 = C3×D4.7D4φ: D4/C22C2 ⊆ Out C3×D496(C3xD4).41D4192,885
(C3×D4).42D4 = C3×D4.8D4φ: D4/C22C2 ⊆ Out C3×D4484(C3xD4).42D4192,887
(C3×D4).43D4 = C3×D4.9D4φ: D4/C22C2 ⊆ Out C3×D4484(C3xD4).43D4192,888
(C3×D4).44D4 = C3×D4.10D4φ: D4/C22C2 ⊆ Out C3×D4484(C3xD4).44D4192,889
(C3×D4).45D4 = C3×D4○D8φ: trivial image484(C3xD4).45D4192,1465
(C3×D4).46D4 = C3×D4○SD16φ: trivial image484(C3xD4).46D4192,1466
(C3×D4).47D4 = C3×Q8○D8φ: trivial image964(C3xD4).47D4192,1467

׿
×
𝔽