metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.9D12, D12.34D4, Q8.14D12, C42.25D6, Dic6.34D4, M4(2).7D6, C4wrC2:3S3, (C3xD4).4D4, C12.5(C2xD4), (C3xQ8).4D4, C4oD4.19D6, C4.11(C2xD12), C8.D6:9C2, C4.127(S3xD4), Q8oD12.1C2, C42:4S3:9C2, C6.29C22wrC2, C12:2Q8:10C2, Q8.14D6:2C2, (C2xDic3).2D4, C22.31(S3xD4), C12.47D4:1C2, C3:2(D4.10D4), (C4xC12).52C22, C2.32(D6:D4), (C2xC12).266C23, C4oD12.15C22, (C2xDic6).76C22, (C3xM4(2)).4C22, C4.Dic3.10C22, (C3xC4wrC2):3C2, (C2xC6).28(C2xD4), (C3xC4oD4).7C22, (C2xC4).111(C22xS3), SmallGroup(192,385)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8.14D12
G = < a,b,c,d | a4=1, b2=c12=d2=a2, bab-1=cac-1=dad-1=a-1, cbc-1=dbd-1=ab, dcd-1=c11 >
Subgroups: 416 in 142 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C4:C4, M4(2), M4(2), SD16, Q16, C2xQ8, C4oD4, C4oD4, C3:C8, C24, Dic6, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C4.10D4, C4wrC2, C4wrC2, C4:Q8, C8.C22, 2- 1+4, C24:C2, Dic12, C4.Dic3, C4:Dic3, D4.S3, C3:Q16, C4xC12, C3xM4(2), C2xDic6, C2xDic6, C4oD12, C4oD12, D4:2S3, S3xQ8, C3xC4oD4, D4.10D4, C42:4S3, C12.47D4, C3xC4wrC2, C12:2Q8, C8.D6, Q8.14D6, Q8oD12, Q8.14D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C22xS3, C22wrC2, C2xD12, S3xD4, D4.10D4, D6:D4, Q8.14D12
Character table of Q8.14D12
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | 24B | |
size | 1 | 1 | 2 | 4 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 12 | 12 | 24 | 2 | 4 | 8 | 8 | 24 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | 0 | -1 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | 0 | -1 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 2 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | 2 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 1 | 1 | -√3 | -1 | √3 | -√3 | √3 | 1 | -√3 | √3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | √3 | -1 | -√3 | √3 | -√3 | -1 | -√3 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | 2 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 1 | 1 | √3 | -1 | -√3 | √3 | -√3 | 1 | √3 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | -√3 | -1 | √3 | -√3 | √3 | -1 | √3 | -√3 | orthogonal lifted from D12 |
ρ23 | 4 | 4 | 4 | 0 | 0 | -2 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ24 | 4 | 4 | -4 | 0 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | -1+√3 | 0 | 1+√3 | 1-√3 | -1-√3 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 1-√3 | 0 | -1-√3 | -1+√3 | 1+√3 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 1+√3 | 0 | -1+√3 | -1-√3 | 1-√3 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | -1-√3 | 0 | 1-√3 | 1+√3 | -1+√3 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 7 13 19)(2 20 14 8)(3 9 15 21)(4 22 16 10)(5 11 17 23)(6 24 18 12)(25 43 37 31)(26 32 38 44)(27 45 39 33)(28 34 40 46)(29 47 41 35)(30 36 42 48)
(1 4 13 16)(2 11 14 23)(3 6 15 18)(5 8 17 20)(7 10 19 22)(9 12 21 24)(25 34 37 46)(26 29 38 41)(27 36 39 48)(28 31 40 43)(30 33 42 45)(32 35 44 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 44 13 32)(2 31 14 43)(3 42 15 30)(4 29 16 41)(5 40 17 28)(6 27 18 39)(7 38 19 26)(8 25 20 37)(9 36 21 48)(10 47 22 35)(11 34 23 46)(12 45 24 33)
G:=sub<Sym(48)| (1,7,13,19)(2,20,14,8)(3,9,15,21)(4,22,16,10)(5,11,17,23)(6,24,18,12)(25,43,37,31)(26,32,38,44)(27,45,39,33)(28,34,40,46)(29,47,41,35)(30,36,42,48), (1,4,13,16)(2,11,14,23)(3,6,15,18)(5,8,17,20)(7,10,19,22)(9,12,21,24)(25,34,37,46)(26,29,38,41)(27,36,39,48)(28,31,40,43)(30,33,42,45)(32,35,44,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44,13,32)(2,31,14,43)(3,42,15,30)(4,29,16,41)(5,40,17,28)(6,27,18,39)(7,38,19,26)(8,25,20,37)(9,36,21,48)(10,47,22,35)(11,34,23,46)(12,45,24,33)>;
G:=Group( (1,7,13,19)(2,20,14,8)(3,9,15,21)(4,22,16,10)(5,11,17,23)(6,24,18,12)(25,43,37,31)(26,32,38,44)(27,45,39,33)(28,34,40,46)(29,47,41,35)(30,36,42,48), (1,4,13,16)(2,11,14,23)(3,6,15,18)(5,8,17,20)(7,10,19,22)(9,12,21,24)(25,34,37,46)(26,29,38,41)(27,36,39,48)(28,31,40,43)(30,33,42,45)(32,35,44,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44,13,32)(2,31,14,43)(3,42,15,30)(4,29,16,41)(5,40,17,28)(6,27,18,39)(7,38,19,26)(8,25,20,37)(9,36,21,48)(10,47,22,35)(11,34,23,46)(12,45,24,33) );
G=PermutationGroup([[(1,7,13,19),(2,20,14,8),(3,9,15,21),(4,22,16,10),(5,11,17,23),(6,24,18,12),(25,43,37,31),(26,32,38,44),(27,45,39,33),(28,34,40,46),(29,47,41,35),(30,36,42,48)], [(1,4,13,16),(2,11,14,23),(3,6,15,18),(5,8,17,20),(7,10,19,22),(9,12,21,24),(25,34,37,46),(26,29,38,41),(27,36,39,48),(28,31,40,43),(30,33,42,45),(32,35,44,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,44,13,32),(2,31,14,43),(3,42,15,30),(4,29,16,41),(5,40,17,28),(6,27,18,39),(7,38,19,26),(8,25,20,37),(9,36,21,48),(10,47,22,35),(11,34,23,46),(12,45,24,33)]])
Matrix representation of Q8.14D12 ►in GL4(F73) generated by
66 | 59 | 0 | 0 |
14 | 7 | 0 | 0 |
66 | 59 | 7 | 14 |
14 | 7 | 59 | 66 |
1 | 0 | 71 | 0 |
0 | 1 | 0 | 71 |
1 | 0 | 72 | 0 |
0 | 1 | 0 | 72 |
72 | 72 | 2 | 2 |
1 | 0 | 71 | 0 |
69 | 3 | 1 | 1 |
70 | 66 | 72 | 0 |
8 | 34 | 0 | 0 |
26 | 65 | 0 | 0 |
68 | 7 | 18 | 20 |
12 | 5 | 2 | 55 |
G:=sub<GL(4,GF(73))| [66,14,66,14,59,7,59,7,0,0,7,59,0,0,14,66],[1,0,1,0,0,1,0,1,71,0,72,0,0,71,0,72],[72,1,69,70,72,0,3,66,2,71,1,72,2,0,1,0],[8,26,68,12,34,65,7,5,0,0,18,2,0,0,20,55] >;
Q8.14D12 in GAP, Magma, Sage, TeX
Q_8._{14}D_{12}
% in TeX
G:=Group("Q8.14D12");
// GroupNames label
G:=SmallGroup(192,385);
// by ID
G=gap.SmallGroup(192,385);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,58,1123,136,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=1,b^2=c^12=d^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a*b,d*c*d^-1=c^11>;
// generators/relations
Export