Copied to
clipboard

G = D4.10D12order 192 = 26·3

5th non-split extension by D4 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.10D12, D12.35D4, Q8.15D12, C42.26D6, Dic6.35D4, M4(2).8D6, C4wrC2:4S3, C8:D6:9C2, Q8oD12:1C2, (C3xD4).5D4, C12.6(C2xD4), (C3xQ8).5D4, D4:D6:2C2, C4oD4.20D6, C4.12(C2xD12), C4.128(S3xD4), C6.30C22wrC2, C3:2(D4.8D4), (C2xDic3).3D4, C42:4S3:10C2, C22.32(S3xD4), C42:7S3:11C2, C12.47D4:2C2, (C4xC12).53C22, C2.33(D6:D4), (C2xC12).267C23, C4oD12.16C22, (C2xD12).71C22, (C2xDic6).77C22, (C3xM4(2)).5C22, C4.Dic3.11C22, (C3xC4wrC2):4C2, (C2xC6).29(C2xD4), (C3xC4oD4).8C22, (C2xC4).112(C22xS3), SmallGroup(192,386)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D4.10D12
C1C3C6C12C2xC12C4oD12Q8oD12 — D4.10D12
C3C6C2xC12 — D4.10D12
C1C2C2xC4C4wrC2

Generators and relations for D4.10D12
 G = < a,b,c,d | a12=b2=c4=1, d2=a6, bab=a-1, ac=ca, ad=da, cbc-1=a3b, bd=db, dcd-1=a9c-1 >

Subgroups: 480 in 146 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C22:C4, M4(2), M4(2), D8, SD16, C2xD4, C2xQ8, C4oD4, C4oD4, C3:C8, C24, Dic6, Dic6, C4xS3, D12, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C4.10D4, C4wrC2, C4wrC2, C4.4D4, C8:C22, 2- 1+4, C24:C2, D24, C4.Dic3, D6:C4, D4:S3, Q8:2S3, C4xC12, C3xM4(2), C2xDic6, C2xDic6, C2xD12, C4oD12, C4oD12, D4:2S3, S3xQ8, C3xC4oD4, D4.8D4, C42:4S3, C12.47D4, C3xC4wrC2, C42:7S3, C8:D6, D4:D6, Q8oD12, D4.10D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C22xS3, C22wrC2, C2xD12, S3xD4, D4.8D4, D6:D4, D4.10D12

Character table of D4.10D12

 class 12A2B2C2D2E34A4B4C4D4E4F4G4H6A6B6C8A8B12A12B12C12D12E12F12G12H24A24B
 size 112412242224441212122488242244444888
ρ1111111111111111111111111111111    trivial
ρ2111-1-11111-1111-1111-1-1-11111111-1-1-1    linear of order 2
ρ3111-11-1111-111-11-111-1-111111111-1-1-1    linear of order 2
ρ41111-1-1111111-1-1-11111-11111111111    linear of order 2
ρ5111-1-1-1111-1-1-11-1111-11111-11-1-1-1-111    linear of order 2
ρ611111-11111-1-1111111-1-111-11-1-1-11-1-1    linear of order 2
ρ71111-111111-1-1-1-1-1111-1111-11-1-1-11-1-1    linear of order 2
ρ8111-111111-1-1-1-11-111-11-111-11-1-1-1-111    linear of order 2
ρ9222-200-122-2-2-2000-1-1120-1-11-11111-1-1    orthogonal lifted from D6
ρ10222-200-122-222000-1-11-20-1-1-1-1-1-1-1111    orthogonal lifted from D6
ρ112220002-2-200020-222000-2-20-2000000    orthogonal lifted from D4
ρ1222-22002-22-2000002-2200-2-202000-200    orthogonal lifted from D4
ρ1322-2-2002-222000002-2-200-2-202000200    orthogonal lifted from D4
ρ1422-202022-20000-202-2000220-2000000    orthogonal lifted from D4
ρ152220002-2-2000-20222000-2-20-2000000    orthogonal lifted from D4
ρ16222200-1222-2-2000-1-1-1-20-1-11-1111-111    orthogonal lifted from D6
ρ17222200-122222000-1-1-120-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1822-20-2022-20000202-2000220-2000000    orthogonal lifted from D4
ρ1922-2200-1-22-200000-11-10011-3-13-331-33    orthogonal lifted from D12
ρ2022-2-200-1-22200000-1110011-3-13-33-13-3    orthogonal lifted from D12
ρ2122-2200-1-22-200000-11-100113-1-33-313-3    orthogonal lifted from D12
ρ2222-2-200-1-22200000-11100113-1-33-3-1-33    orthogonal lifted from D12
ρ23444000-2-4-4000000-2-20002202000000    orthogonal lifted from S3xD4
ρ2444-4000-24-4000000-22000-2-202000000    orthogonal lifted from S3xD4
ρ254-400004000-2i2i000-4000000-2i02i2i-2i000    complex lifted from D4.8D4
ρ264-4000040002i-2i000-40000002i0-2i-2i2i000    complex lifted from D4.8D4
ρ274-40000-2000-2i2i00020000-2323ζ4+2ζ32+10ζ43+2ζ32+1ζ43+2ζ3+1ζ4+2ζ3+1000    complex faithful
ρ284-40000-20002i-2i00020000-2323ζ43+2ζ3+10ζ4+2ζ3+1ζ4+2ζ32+1ζ43+2ζ32+1000    complex faithful
ρ294-40000-2000-2i2i0002000023-23ζ4+2ζ3+10ζ43+2ζ3+1ζ43+2ζ32+1ζ4+2ζ32+1000    complex faithful
ρ304-40000-20002i-2i0002000023-23ζ43+2ζ32+10ζ4+2ζ32+1ζ4+2ζ3+1ζ43+2ζ3+1000    complex faithful

Smallest permutation representation of D4.10D12
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 24)(11 23)(12 22)(25 39)(26 38)(27 37)(28 48)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 37)(11 38)(12 39)(13 31 19 25)(14 32 20 26)(15 33 21 27)(16 34 22 28)(17 35 23 29)(18 36 24 30)
(1 31 7 25)(2 32 8 26)(3 33 9 27)(4 34 10 28)(5 35 11 29)(6 36 12 30)(13 37 19 43)(14 38 20 44)(15 39 21 45)(16 40 22 46)(17 41 23 47)(18 42 24 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,24)(11,23)(12,22)(25,39)(26,38)(27,37)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,31,19,25)(14,32,20,26)(15,33,21,27)(16,34,22,28)(17,35,23,29)(18,36,24,30), (1,31,7,25)(2,32,8,26)(3,33,9,27)(4,34,10,28)(5,35,11,29)(6,36,12,30)(13,37,19,43)(14,38,20,44)(15,39,21,45)(16,40,22,46)(17,41,23,47)(18,42,24,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,24)(11,23)(12,22)(25,39)(26,38)(27,37)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,31,19,25)(14,32,20,26)(15,33,21,27)(16,34,22,28)(17,35,23,29)(18,36,24,30), (1,31,7,25)(2,32,8,26)(3,33,9,27)(4,34,10,28)(5,35,11,29)(6,36,12,30)(13,37,19,43)(14,38,20,44)(15,39,21,45)(16,40,22,46)(17,41,23,47)(18,42,24,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,24),(11,23),(12,22),(25,39),(26,38),(27,37),(28,48),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,37),(11,38),(12,39),(13,31,19,25),(14,32,20,26),(15,33,21,27),(16,34,22,28),(17,35,23,29),(18,36,24,30)], [(1,31,7,25),(2,32,8,26),(3,33,9,27),(4,34,10,28),(5,35,11,29),(6,36,12,30),(13,37,19,43),(14,38,20,44),(15,39,21,45),(16,40,22,46),(17,41,23,47),(18,42,24,48)]])

Matrix representation of D4.10D12 in GL6(F73)

63520000
47110000
00727201
00217272
000001
0000720
,
6310000
47100000
0072000
000010
000100
00717211
,
72710000
110000
00272700
0019462727
0000270
0000027
,
100000
010000
004646270
0000460
0004600
0019462727

G:=sub<GL(6,GF(73))| [63,47,0,0,0,0,52,11,0,0,0,0,0,0,72,2,0,0,0,0,72,1,0,0,0,0,0,72,0,72,0,0,1,72,1,0],[63,47,0,0,0,0,1,10,0,0,0,0,0,0,72,0,0,71,0,0,0,0,1,72,0,0,0,1,0,1,0,0,0,0,0,1],[72,1,0,0,0,0,71,1,0,0,0,0,0,0,27,19,0,0,0,0,27,46,0,0,0,0,0,27,27,0,0,0,0,27,0,27],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,0,19,0,0,46,0,46,46,0,0,27,46,0,27,0,0,0,0,0,27] >;

D4.10D12 in GAP, Magma, Sage, TeX

D_4._{10}D_{12}
% in TeX

G:=Group("D4.10D12");
// GroupNames label

G:=SmallGroup(192,386);
// by ID

G=gap.SmallGroup(192,386);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,226,1123,136,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=1,d^2=a^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d^-1=a^9*c^-1>;
// generators/relations

Export

Character table of D4.10D12 in TeX

׿
x
:
Z
F
o
wr
Q
<