extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4)⋊1S3 = SL2(𝔽3)⋊D4 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):1S3 | 192,986 |
(C2×C4○D4)⋊2S3 = C2×C4.6S4 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):2S3 | 192,1480 |
(C2×C4○D4)⋊3S3 = C2×C4.3S4 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):3S3 | 192,1481 |
(C2×C4○D4)⋊4S3 = GL2(𝔽3)⋊C22 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4):4S3 | 192,1482 |
(C2×C4○D4)⋊5S3 = (C3×D4)⋊14D4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):5S3 | 192,797 |
(C2×C4○D4)⋊6S3 = C2×D4⋊D6 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):6S3 | 192,1379 |
(C2×C4○D4)⋊7S3 = C2×Q8.13D6 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):7S3 | 192,1380 |
(C2×C4○D4)⋊8S3 = C12.C24 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4):8S3 | 192,1381 |
(C2×C4○D4)⋊9S3 = C6.1042- 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):9S3 | 192,1383 |
(C2×C4○D4)⋊10S3 = (C2×D4)⋊43D6 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):10S3 | 192,1387 |
(C2×C4○D4)⋊11S3 = C6.1452+ 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):11S3 | 192,1388 |
(C2×C4○D4)⋊12S3 = C6.1462+ 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):12S3 | 192,1389 |
(C2×C4○D4)⋊13S3 = C6.1072- 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):13S3 | 192,1390 |
(C2×C4○D4)⋊14S3 = (C2×C12)⋊17D4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):14S3 | 192,1391 |
(C2×C4○D4)⋊15S3 = C6.1082- 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):15S3 | 192,1392 |
(C2×C4○D4)⋊16S3 = C6.1482+ 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):16S3 | 192,1393 |
(C2×C4○D4)⋊17S3 = C2×D4○D12 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):17S3 | 192,1521 |
(C2×C4○D4)⋊18S3 = C2×Q8○D12 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):18S3 | 192,1522 |
(C2×C4○D4)⋊19S3 = C6.C25 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4):19S3 | 192,1523 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4).1S3 = C2×U2(𝔽3) | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4).1S3 | 192,981 |
(C2×C4○D4).2S3 = U2(𝔽3)⋊C2 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).2S3 | 192,982 |
(C2×C4○D4).3S3 = C4.A4⋊C4 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).3S3 | 192,983 |
(C2×C4○D4).4S3 = SL2(𝔽3).D4 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).4S3 | 192,984 |
(C2×C4○D4).5S3 = (C2×C4).S4 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).5S3 | 192,985 |
(C2×C4○D4).6S3 = C2×C4.S4 | φ: S3/C1 → S3 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).6S3 | 192,1479 |
(C2×C4○D4).7S3 = C4○D4⋊3Dic3 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).7S3 | 192,791 |
(C2×C4○D4).8S3 = C4○D4⋊4Dic3 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).8S3 | 192,792 |
(C2×C4○D4).9S3 = (C6×D4).11C4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).9S3 | 192,793 |
(C2×C4○D4).10S3 = C2×Q8⋊3Dic3 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4).10S3 | 192,794 |
(C2×C4○D4).11S3 = (C6×D4)⋊9C4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).11S3 | 192,795 |
(C2×C4○D4).12S3 = (C6×D4).16C4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).12S3 | 192,796 |
(C2×C4○D4).13S3 = (C3×D4).32D4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).13S3 | 192,798 |
(C2×C4○D4).14S3 = (C6×D4)⋊10C4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).14S3 | 192,799 |
(C2×C4○D4).15S3 = C12.76C24 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).15S3 | 192,1378 |
(C2×C4○D4).16S3 = C2×Q8.14D6 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).16S3 | 192,1382 |
(C2×C4○D4).17S3 = C6.1052- 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).17S3 | 192,1384 |
(C2×C4○D4).18S3 = C6.1442+ 1+4 | φ: S3/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).18S3 | 192,1386 |
(C2×C4○D4).19S3 = C2×D4.Dic3 | φ: trivial image | 96 | | (C2xC4oD4).19S3 | 192,1377 |
(C2×C4○D4).20S3 = Dic3×C4○D4 | φ: trivial image | 96 | | (C2xC4oD4).20S3 | 192,1385 |