extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xS3xD4):1C2 = D4:D12 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):1C2 | 192,332 |
(C2xS3xD4):2C2 = D12:D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):2C2 | 192,715 |
(C2xS3xD4):3C2 = D4xD12 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):3C2 | 192,1108 |
(C2xS3xD4):4C2 = D4:5D12 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):4C2 | 192,1113 |
(C2xS3xD4):5C2 = S3xC22wrC2 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 24 | | (C2xS3xD4):5C2 | 192,1147 |
(C2xS3xD4):6C2 = C24:7D6 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):6C2 | 192,1148 |
(C2xS3xD4):7C2 = C24:8D6 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):7C2 | 192,1149 |
(C2xS3xD4):8C2 = S3xC4:D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):8C2 | 192,1163 |
(C2xS3xD4):9C2 = C6.372+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):9C2 | 192,1164 |
(C2xS3xD4):10C2 = C6.382+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):10C2 | 192,1166 |
(C2xS3xD4):11C2 = D12:19D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):11C2 | 192,1168 |
(C2xS3xD4):12C2 = C6.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):12C2 | 192,1169 |
(C2xS3xD4):13C2 = D12:20D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):13C2 | 192,1171 |
(C2xS3xD4):14C2 = C6.1202+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):14C2 | 192,1212 |
(C2xS3xD4):15C2 = C6.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):15C2 | 192,1213 |
(C2xS3xD4):16C2 = C42:20D6 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):16C2 | 192,1233 |
(C2xS3xD4):17C2 = D12:10D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):17C2 | 192,1235 |
(C2xS3xD4):18C2 = S3xC4:1D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):18C2 | 192,1273 |
(C2xS3xD4):19C2 = C42:28D6 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):19C2 | 192,1274 |
(C2xS3xD4):20C2 = D12:11D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):20C2 | 192,1276 |
(C2xS3xD4):21C2 = C2xS3xD8 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):21C2 | 192,1313 |
(C2xS3xD4):22C2 = C2xD8:S3 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):22C2 | 192,1314 |
(C2xS3xD4):23C2 = C2xQ8:3D6 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):23C2 | 192,1318 |
(C2xS3xD4):24C2 = S3xC8:C22 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 24 | 8+ | (C2xS3xD4):24C2 | 192,1331 |
(C2xS3xD4):25C2 = D4xC3:D4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):25C2 | 192,1360 |
(C2xS3xD4):26C2 = C6.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):26C2 | 192,1388 |
(C2xS3xD4):27C2 = C2xD4:6D6 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):27C2 | 192,1516 |
(C2xS3xD4):28C2 = C2xD4oD12 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 48 | | (C2xS3xD4):28C2 | 192,1521 |
(C2xS3xD4):29C2 = S3x2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xS3xD4 | 24 | 8+ | (C2xS3xD4):29C2 | 192,1524 |
(C2xS3xD4):30C2 = C2xS3xC4oD4 | φ: trivial image | 48 | | (C2xS3xD4):30C2 | 192,1520 |