Extensions 1→N→G→Q→1 with N=C2xS3xD4 and Q=C2

Direct product G=NxQ with N=C2xS3xD4 and Q=C2
dρLabelID
C22xS3xD448C2^2xS3xD4192,1514

Semidirect products G=N:Q with N=C2xS3xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xD4):1C2 = D4:D12φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):1C2192,332
(C2xS3xD4):2C2 = D12:D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):2C2192,715
(C2xS3xD4):3C2 = D4xD12φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):3C2192,1108
(C2xS3xD4):4C2 = D4:5D12φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):4C2192,1113
(C2xS3xD4):5C2 = S3xC22wrC2φ: C2/C1C2 ⊆ Out C2xS3xD424(C2xS3xD4):5C2192,1147
(C2xS3xD4):6C2 = C24:7D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):6C2192,1148
(C2xS3xD4):7C2 = C24:8D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):7C2192,1149
(C2xS3xD4):8C2 = S3xC4:D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):8C2192,1163
(C2xS3xD4):9C2 = C6.372+ 1+4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):9C2192,1164
(C2xS3xD4):10C2 = C6.382+ 1+4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):10C2192,1166
(C2xS3xD4):11C2 = D12:19D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):11C2192,1168
(C2xS3xD4):12C2 = C6.402+ 1+4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):12C2192,1169
(C2xS3xD4):13C2 = D12:20D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):13C2192,1171
(C2xS3xD4):14C2 = C6.1202+ 1+4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):14C2192,1212
(C2xS3xD4):15C2 = C6.1212+ 1+4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):15C2192,1213
(C2xS3xD4):16C2 = C42:20D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):16C2192,1233
(C2xS3xD4):17C2 = D12:10D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):17C2192,1235
(C2xS3xD4):18C2 = S3xC4:1D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):18C2192,1273
(C2xS3xD4):19C2 = C42:28D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):19C2192,1274
(C2xS3xD4):20C2 = D12:11D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):20C2192,1276
(C2xS3xD4):21C2 = C2xS3xD8φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):21C2192,1313
(C2xS3xD4):22C2 = C2xD8:S3φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):22C2192,1314
(C2xS3xD4):23C2 = C2xQ8:3D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):23C2192,1318
(C2xS3xD4):24C2 = S3xC8:C22φ: C2/C1C2 ⊆ Out C2xS3xD4248+(C2xS3xD4):24C2192,1331
(C2xS3xD4):25C2 = D4xC3:D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):25C2192,1360
(C2xS3xD4):26C2 = C6.1452+ 1+4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):26C2192,1388
(C2xS3xD4):27C2 = C2xD4:6D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):27C2192,1516
(C2xS3xD4):28C2 = C2xD4oD12φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4):28C2192,1521
(C2xS3xD4):29C2 = S3x2+ 1+4φ: C2/C1C2 ⊆ Out C2xS3xD4248+(C2xS3xD4):29C2192,1524
(C2xS3xD4):30C2 = C2xS3xC4oD4φ: trivial image48(C2xS3xD4):30C2192,1520

Non-split extensions G=N.Q with N=C2xS3xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xD4).1C2 = S3xC23:C4φ: C2/C1C2 ⊆ Out C2xS3xD4248+(C2xS3xD4).1C2192,302
(C2xS3xD4).2C2 = S3xC4.D4φ: C2/C1C2 ⊆ Out C2xS3xD4248+(C2xS3xD4).2C2192,303
(C2xS3xD4).3C2 = S3xD4:C4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).3C2192,328
(C2xS3xD4).4C2 = C4:C4:19D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).4C2192,329
(C2xS3xD4).5C2 = D6:5SD16φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).5C2192,335
(C2xS3xD4).6C2 = D6:6SD16φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).6C2192,728
(C2xS3xD4).7C2 = C42:13D6φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).7C2192,1104
(C2xS3xD4).8C2 = S3xC22.D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).8C2192,1211
(C2xS3xD4).9C2 = S3xC4.4D4φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).9C2192,1232
(C2xS3xD4).10C2 = C2xS3xSD16φ: C2/C1C2 ⊆ Out C2xS3xD448(C2xS3xD4).10C2192,1317
(C2xS3xD4).11C2 = C4xS3xD4φ: trivial image48(C2xS3xD4).11C2192,1103

׿
x
:
Z
F
o
wr
Q
<