direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3xC4.D4, M4(2):14D6, (C4xS3).1D4, C4.146(S3xD4), C12.89(C2xD4), (C2xD4).121D6, C12.D4:3C2, (S3xM4(2)):5C2, (S3xC23).2C4, (C2xC12).1C23, C23.11(C4xS3), C12.46D4:9C2, (C6xD4).11C22, C4.Dic3:1C22, D6.16(C22:C4), (C2xD12).38C22, (C3xM4(2)):16C22, Dic3.4(C22:C4), (C2xS3xD4).2C2, C3:1(C2xC4.D4), (C2xC3:D4).1C4, (S3xC2xC4).1C22, C22.14(S3xC2xC4), (C3xC4.D4):9C2, C2.13(S3xC22:C4), C6.12(C2xC22:C4), (C2xC6).8(C22xC4), (C22xC6).6(C2xC4), (C2xC4).1(C22xS3), (C22xS3).2(C2xC4), (C2xDic3).19(C2xC4), SmallGroup(192,303)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3xC4.D4
G = < a,b,c,d,e | a3=b2=c4=1, d4=c2, e2=c, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=c-1d3 >
Subgroups: 656 in 186 conjugacy classes, 53 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC8, M4(2), M4(2), C22xC4, C2xD4, C2xD4, C24, C3:C8, C24, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xS3, C22xS3, C22xC6, C4.D4, C4.D4, C2xM4(2), C22xD4, S3xC8, C8:S3, C4.Dic3, C3xM4(2), S3xC2xC4, C2xD12, S3xD4, C2xC3:D4, C6xD4, S3xC23, C2xC4.D4, C12.46D4, C12.D4, C3xC4.D4, S3xM4(2), C2xS3xD4, S3xC4.D4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, C22xS3, C4.D4, C2xC22:C4, S3xC2xC4, S3xD4, C2xC4.D4, S3xC22:C4, S3xC4.D4
(1 16 22)(2 9 23)(3 10 24)(4 11 17)(5 12 18)(6 13 19)(7 14 20)(8 15 21)
(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 23 21 19)(18 20 22 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 6 3 4 5 2 7 8)(9 14 15 16 13 10 11 12)(17 18 23 20 21 22 19 24)
G:=sub<Sym(24)| (1,16,22)(2,9,23)(3,10,24)(4,11,17)(5,12,18)(6,13,19)(7,14,20)(8,15,21), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,6,3,4,5,2,7,8)(9,14,15,16,13,10,11,12)(17,18,23,20,21,22,19,24)>;
G:=Group( (1,16,22)(2,9,23)(3,10,24)(4,11,17)(5,12,18)(6,13,19)(7,14,20)(8,15,21), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,6,3,4,5,2,7,8)(9,14,15,16,13,10,11,12)(17,18,23,20,21,22,19,24) );
G=PermutationGroup([[(1,16,22),(2,9,23),(3,10,24),(4,11,17),(5,12,18),(6,13,19),(7,14,20),(8,15,21)], [(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,23,21,19),(18,20,22,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,6,3,4,5,2,7,8),(9,14,15,16,13,10,11,12),(17,18,23,20,21,22,19,24)]])
G:=TransitiveGroup(24,339);
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 6 | 12 | 12 | 2 | 2 | 2 | 6 | 6 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 8 | 8 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | S3 | D4 | D6 | D6 | C4xS3 | C4.D4 | S3xD4 | S3xC4.D4 |
kernel | S3xC4.D4 | C12.46D4 | C12.D4 | C3xC4.D4 | S3xM4(2) | C2xS3xD4 | C2xC3:D4 | S3xC23 | C4.D4 | C4xS3 | M4(2) | C2xD4 | C23 | S3 | C4 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 4 | 4 | 1 | 4 | 2 | 1 | 4 | 2 | 2 | 1 |
Matrix representation of S3xC4.D4 ►in GL6(F73)
72 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 3 | 0 | 0 |
0 | 0 | 48 | 1 | 0 | 0 |
0 | 0 | 59 | 0 | 0 | 1 |
0 | 0 | 59 | 42 | 72 | 0 |
27 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 42 | 71 | 0 |
0 | 0 | 55 | 27 | 48 | 25 |
0 | 0 | 60 | 35 | 13 | 14 |
0 | 0 | 59 | 4 | 59 | 60 |
46 | 0 | 0 | 0 | 0 | 0 |
0 | 46 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 42 | 71 | 0 |
0 | 0 | 0 | 1 | 48 | 48 |
0 | 0 | 0 | 0 | 13 | 59 |
0 | 0 | 1 | 0 | 59 | 13 |
G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,48,59,59,0,0,3,1,0,42,0,0,0,0,0,72,0,0,0,0,1,0],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,46,55,60,59,0,0,42,27,35,4,0,0,71,48,13,59,0,0,0,25,14,60],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,1,0,0,42,1,0,0,0,0,71,48,13,59,0,0,0,48,59,13] >;
S3xC4.D4 in GAP, Magma, Sage, TeX
S_3\times C_4.D_4
% in TeX
G:=Group("S3xC4.D4");
// GroupNames label
G:=SmallGroup(192,303);
// by ID
G=gap.SmallGroup(192,303);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,58,570,136,438,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^4=1,d^4=c^2,e^2=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations