Copied to
clipboard

G = S3xC4.D4order 192 = 26·3

Direct product of S3 and C4.D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3xC4.D4, M4(2):14D6, (C4xS3).1D4, C4.146(S3xD4), C12.89(C2xD4), (C2xD4).121D6, C12.D4:3C2, (S3xM4(2)):5C2, (S3xC23).2C4, (C2xC12).1C23, C23.11(C4xS3), C12.46D4:9C2, (C6xD4).11C22, C4.Dic3:1C22, D6.16(C22:C4), (C2xD12).38C22, (C3xM4(2)):16C22, Dic3.4(C22:C4), (C2xS3xD4).2C2, C3:1(C2xC4.D4), (C2xC3:D4).1C4, (S3xC2xC4).1C22, C22.14(S3xC2xC4), (C3xC4.D4):9C2, C2.13(S3xC22:C4), C6.12(C2xC22:C4), (C2xC6).8(C22xC4), (C22xC6).6(C2xC4), (C2xC4).1(C22xS3), (C22xS3).2(C2xC4), (C2xDic3).19(C2xC4), SmallGroup(192,303)

Series: Derived Chief Lower central Upper central

C1C2xC6 — S3xC4.D4
C1C3C6C12C2xC12S3xC2xC4C2xS3xD4 — S3xC4.D4
C3C6C2xC6 — S3xC4.D4
C1C2C2xC4C4.D4

Generators and relations for S3xC4.D4
 G = < a,b,c,d,e | a3=b2=c4=1, d4=c2, e2=c, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=c-1d3 >

Subgroups: 656 in 186 conjugacy classes, 53 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC8, M4(2), M4(2), C22xC4, C2xD4, C2xD4, C24, C3:C8, C24, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xS3, C22xS3, C22xC6, C4.D4, C4.D4, C2xM4(2), C22xD4, S3xC8, C8:S3, C4.Dic3, C3xM4(2), S3xC2xC4, C2xD12, S3xD4, C2xC3:D4, C6xD4, S3xC23, C2xC4.D4, C12.46D4, C12.D4, C3xC4.D4, S3xM4(2), C2xS3xD4, S3xC4.D4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, C22xS3, C4.D4, C2xC22:C4, S3xC2xC4, S3xD4, C2xC4.D4, S3xC22:C4, S3xC4.D4

Permutation representations of S3xC4.D4
On 24 points - transitive group 24T339
Generators in S24
(1 16 22)(2 9 23)(3 10 24)(4 11 17)(5 12 18)(6 13 19)(7 14 20)(8 15 21)
(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 23 21 19)(18 20 22 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 6 3 4 5 2 7 8)(9 14 15 16 13 10 11 12)(17 18 23 20 21 22 19 24)

G:=sub<Sym(24)| (1,16,22)(2,9,23)(3,10,24)(4,11,17)(5,12,18)(6,13,19)(7,14,20)(8,15,21), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,6,3,4,5,2,7,8)(9,14,15,16,13,10,11,12)(17,18,23,20,21,22,19,24)>;

G:=Group( (1,16,22)(2,9,23)(3,10,24)(4,11,17)(5,12,18)(6,13,19)(7,14,20)(8,15,21), (9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,6,3,4,5,2,7,8)(9,14,15,16,13,10,11,12)(17,18,23,20,21,22,19,24) );

G=PermutationGroup([[(1,16,22),(2,9,23),(3,10,24),(4,11,17),(5,12,18),(6,13,19),(7,14,20),(8,15,21)], [(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,23,21,19),(18,20,22,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,6,3,4,5,2,7,8),(9,14,15,16,13,10,11,12),(17,18,23,20,21,22,19,24)]])

G:=TransitiveGroup(24,339);

33 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D6A6B6C6D8A8B8C8D8E8F8G8H12A12B24A24B24C24D
order122222222234444666688888888121224242424
size112334461212222662488444412121212448888

33 irreducible representations

dim1111111122222448
type+++++++++++++
imageC1C2C2C2C2C2C4C4S3D4D6D6C4xS3C4.D4S3xD4S3xC4.D4
kernelS3xC4.D4C12.46D4C12.D4C3xC4.D4S3xM4(2)C2xS3xD4C2xC3:D4S3xC23C4.D4C4xS3M4(2)C2xD4C23S3C4C1
# reps1211214414214221

Matrix representation of S3xC4.D4 in GL6(F73)

72720000
100000
001000
000100
000010
000001
,
100000
72720000
0072000
0007200
0000720
0000072
,
7200000
0720000
0072300
0048100
0059001
005942720
,
2700000
0270000
004642710
0055274825
0060351314
005945960
,
4600000
0460000
004642710
00014848
00001359
00105913

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,48,59,59,0,0,3,1,0,42,0,0,0,0,0,72,0,0,0,0,1,0],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,46,55,60,59,0,0,42,27,35,4,0,0,71,48,13,59,0,0,0,25,14,60],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,1,0,0,42,1,0,0,0,0,71,48,13,59,0,0,0,48,59,13] >;

S3xC4.D4 in GAP, Magma, Sage, TeX

S_3\times C_4.D_4
% in TeX

G:=Group("S3xC4.D4");
// GroupNames label

G:=SmallGroup(192,303);
// by ID

G=gap.SmallGroup(192,303);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,58,570,136,438,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=1,d^4=c^2,e^2=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<