Copied to
clipboard

G = D4⋊D12order 192 = 26·3

1st semidirect product of D4 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D64D8, D42D12, D122D4, C4⋊C41D6, (C2×C8)⋊2D6, D6⋊C84C2, (C3×D4)⋊1D4, C2.8(S3×D8), (C2×D24)⋊4C2, C4.1(C2×D12), C4.84(S3×D4), C6.22(C2×D8), C12⋊D41C2, D4⋊C44S3, C32(C22⋊D8), (C2×C24)⋊2C22, C6.D86C2, C6.19C22≀C2, (C2×D4).134D6, C12.107(C2×D4), C2.10(Q83D6), (C2×D12)⋊12C22, C6.55(C8⋊C22), (C2×Dic3).18D4, (C6×D4).34C22, (C22×S3).70D4, C22.171(S3×D4), C2.22(D6⋊D4), (C2×C12).213C23, (C2×S3×D4)⋊1C2, (C2×D4⋊S3)⋊2C2, (C2×C3⋊C8)⋊2C22, (C3×C4⋊C4)⋊3C22, (S3×C2×C4).7C22, (C3×D4⋊C4)⋊4C2, (C2×C6).226(C2×D4), (C2×C4).320(C22×S3), SmallGroup(192,332)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D4⋊D12
C1C3C6C2×C6C2×C12S3×C2×C4C2×S3×D4 — D4⋊D12
C3C6C2×C12 — D4⋊D12
C1C22C2×C4D4⋊C4

Generators and relations for D4⋊D12
 G = < a,b,c,d | a4=b2=c12=d2=1, bab=cac-1=dad=a-1, cbc-1=dbd=a-1b, dcd=c-1 >

Subgroups: 808 in 198 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, C24, C3⋊C8, C24, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C22×S3, C22×S3, C22×C6, C22⋊C8, D4⋊C4, D4⋊C4, C4⋊D4, C2×D8, C22×D4, D24, C2×C3⋊C8, D6⋊C4, D4⋊S3, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C2×D12, S3×D4, C2×C3⋊D4, C6×D4, S3×C23, C22⋊D8, C6.D8, D6⋊C8, C3×D4⋊C4, C12⋊D4, C2×D24, C2×D4⋊S3, C2×S3×D4, D4⋊D12
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, D12, C22×S3, C22≀C2, C2×D8, C8⋊C22, C2×D12, S3×D4, C22⋊D8, D6⋊D4, S3×D8, Q83D6, D4⋊D12

Smallest permutation representation of D4⋊D12
On 48 points
Generators in S48
(1 30 20 41)(2 42 21 31)(3 32 22 43)(4 44 23 33)(5 34 24 45)(6 46 13 35)(7 36 14 47)(8 48 15 25)(9 26 16 37)(10 38 17 27)(11 28 18 39)(12 40 19 29)
(1 47)(2 8)(3 37)(4 10)(5 39)(6 12)(7 41)(9 43)(11 45)(13 19)(14 30)(15 21)(16 32)(17 23)(18 34)(20 36)(22 26)(24 28)(25 42)(27 44)(29 46)(31 48)(33 38)(35 40)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 24)(9 23)(10 22)(11 21)(12 20)(25 45)(26 44)(27 43)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 48)(35 47)(36 46)

G:=sub<Sym(48)| (1,30,20,41)(2,42,21,31)(3,32,22,43)(4,44,23,33)(5,34,24,45)(6,46,13,35)(7,36,14,47)(8,48,15,25)(9,26,16,37)(10,38,17,27)(11,28,18,39)(12,40,19,29), (1,47)(2,8)(3,37)(4,10)(5,39)(6,12)(7,41)(9,43)(11,45)(13,19)(14,30)(15,21)(16,32)(17,23)(18,34)(20,36)(22,26)(24,28)(25,42)(27,44)(29,46)(31,48)(33,38)(35,40), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,24)(9,23)(10,22)(11,21)(12,20)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46)>;

G:=Group( (1,30,20,41)(2,42,21,31)(3,32,22,43)(4,44,23,33)(5,34,24,45)(6,46,13,35)(7,36,14,47)(8,48,15,25)(9,26,16,37)(10,38,17,27)(11,28,18,39)(12,40,19,29), (1,47)(2,8)(3,37)(4,10)(5,39)(6,12)(7,41)(9,43)(11,45)(13,19)(14,30)(15,21)(16,32)(17,23)(18,34)(20,36)(22,26)(24,28)(25,42)(27,44)(29,46)(31,48)(33,38)(35,40), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,24)(9,23)(10,22)(11,21)(12,20)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46) );

G=PermutationGroup([[(1,30,20,41),(2,42,21,31),(3,32,22,43),(4,44,23,33),(5,34,24,45),(6,46,13,35),(7,36,14,47),(8,48,15,25),(9,26,16,37),(10,38,17,27),(11,28,18,39),(12,40,19,29)], [(1,47),(2,8),(3,37),(4,10),(5,39),(6,12),(7,41),(9,43),(11,45),(13,19),(14,30),(15,21),(16,32),(17,23),(18,34),(20,36),(22,26),(24,28),(25,42),(27,44),(29,46),(31,48),(33,38),(35,40)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,24),(9,23),(10,22),(11,21),(12,20),(25,45),(26,44),(27,43),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,48),(35,47),(36,46)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C4D6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222222222344446666688881212121224242424
size111144661212242228122228844121244884444

33 irreducible representations

dim11111111222222222244444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6D8D12C8⋊C22S3×D4S3×D4S3×D8Q83D6
kernelD4⋊D12C6.D8D6⋊C8C3×D4⋊C4C12⋊D4C2×D24C2×D4⋊S3C2×S3×D4D4⋊C4D12C2×Dic3C3×D4C22×S3C4⋊C4C2×C8C2×D4D6D4C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of D4⋊D12 in GL6(𝔽73)

100000
010000
001000
000100
0000171
0000172
,
100000
010000
0072000
0007200
0000171
0000072
,
010000
7210000
00727100
001100
00003241
00001641
,
7210000
010000
00727100
000100
00004132
00005732

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,71,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,71,72],[0,72,0,0,0,0,1,1,0,0,0,0,0,0,72,1,0,0,0,0,71,1,0,0,0,0,0,0,32,16,0,0,0,0,41,41],[72,0,0,0,0,0,1,1,0,0,0,0,0,0,72,0,0,0,0,0,71,1,0,0,0,0,0,0,41,57,0,0,0,0,32,32] >;

D4⋊D12 in GAP, Magma, Sage, TeX

D_4\rtimes D_{12}
% in TeX

G:=Group("D4:D12");
// GroupNames label

G:=SmallGroup(192,332);
// by ID

G=gap.SmallGroup(192,332);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,58,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽