extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊2S3)⋊1C2 = D4⋊3D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):1C2 | 192,340 |
(C2×D4⋊2S3)⋊2C2 = Dic6⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):2C2 | 192,717 |
(C2×D4⋊2S3)⋊3C2 = D4⋊5D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):3C2 | 192,1113 |
(C2×D4⋊2S3)⋊4C2 = D4⋊6D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):4C2 | 192,1114 |
(C2×D4⋊2S3)⋊5C2 = C24.67D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):5C2 | 192,1145 |
(C2×D4⋊2S3)⋊6C2 = C24.44D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):6C2 | 192,1150 |
(C2×D4⋊2S3)⋊7C2 = C24.45D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):7C2 | 192,1151 |
(C2×D4⋊2S3)⋊8C2 = C12⋊(C4○D4) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):8C2 | 192,1155 |
(C2×D4⋊2S3)⋊9C2 = C6.322+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):9C2 | 192,1156 |
(C2×D4⋊2S3)⋊10C2 = Dic6⋊19D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):10C2 | 192,1157 |
(C2×D4⋊2S3)⋊11C2 = Dic6⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):11C2 | 192,1158 |
(C2×D4⋊2S3)⋊12C2 = C4⋊C4⋊21D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):12C2 | 192,1165 |
(C2×D4⋊2S3)⋊13C2 = C6.722- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):13C2 | 192,1167 |
(C2×D4⋊2S3)⋊14C2 = C6.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):14C2 | 192,1169 |
(C2×D4⋊2S3)⋊15C2 = C6.732- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):15C2 | 192,1170 |
(C2×D4⋊2S3)⋊16C2 = C6.822- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):16C2 | 192,1214 |
(C2×D4⋊2S3)⋊17C2 = C4⋊C4⋊28D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):17C2 | 192,1215 |
(C2×D4⋊2S3)⋊18C2 = C42.233D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):18C2 | 192,1227 |
(C2×D4⋊2S3)⋊19C2 = Dic6⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):19C2 | 192,1236 |
(C2×D4⋊2S3)⋊20C2 = C42⋊28D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):20C2 | 192,1274 |
(C2×D4⋊2S3)⋊21C2 = C42.238D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):21C2 | 192,1275 |
(C2×D4⋊2S3)⋊22C2 = Dic6⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):22C2 | 192,1277 |
(C2×D4⋊2S3)⋊23C2 = C2×D8⋊S3 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):23C2 | 192,1314 |
(C2×D4⋊2S3)⋊24C2 = C2×D8⋊3S3 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):24C2 | 192,1315 |
(C2×D4⋊2S3)⋊25C2 = C2×Q8.7D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):25C2 | 192,1320 |
(C2×D4⋊2S3)⋊26C2 = D8⋊4D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | 8- | (C2xD4:2S3):26C2 | 192,1332 |
(C2×D4⋊2S3)⋊27C2 = C24.53D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):27C2 | 192,1365 |
(C2×D4⋊2S3)⋊28C2 = C6.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):28C2 | 192,1383 |
(C2×D4⋊2S3)⋊29C2 = C2×D4⋊6D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | | (C2xD4:2S3):29C2 | 192,1516 |
(C2×D4⋊2S3)⋊30C2 = C2×Q8○D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3):30C2 | 192,1522 |
(C2×D4⋊2S3)⋊31C2 = D6.C24 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | 8- | (C2xD4:2S3):31C2 | 192,1525 |
(C2×D4⋊2S3)⋊32C2 = C2×S3×C4○D4 | φ: trivial image | 48 | | (C2xD4:2S3):32C2 | 192,1520 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊2S3).1C2 = C23⋊C4⋊5S3 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | 8- | (C2xD4:2S3).1C2 | 192,299 |
(C2×D4⋊2S3).2C2 = M4(2).19D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 48 | 8- | (C2xD4:2S3).2C2 | 192,304 |
(C2×D4⋊2S3).3C2 = D4⋊(C4×S3) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).3C2 | 192,330 |
(C2×D4⋊2S3).4C2 = D4⋊2S3⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).4C2 | 192,331 |
(C2×D4⋊2S3).5C2 = D4.D12 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).5C2 | 192,342 |
(C2×D4⋊2S3).6C2 = Dic6.16D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).6C2 | 192,732 |
(C2×D4⋊2S3).7C2 = C42.108D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).7C2 | 192,1105 |
(C2×D4⋊2S3).8C2 = C6.792- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).8C2 | 192,1207 |
(C2×D4⋊2S3).9C2 = C42.141D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).9C2 | 192,1234 |
(C2×D4⋊2S3).10C2 = C2×D4.D6 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊2S3 | 96 | | (C2xD4:2S3).10C2 | 192,1319 |
(C2×D4⋊2S3).11C2 = C4×D4⋊2S3 | φ: trivial image | 96 | | (C2xD4:2S3).11C2 | 192,1095 |