Extensions 1→N→G→Q→1 with N=C2×D42S3 and Q=C2

Direct product G=N×Q with N=C2×D42S3 and Q=C2
dρLabelID
C22×D42S396C2^2xD4:2S3192,1515

Semidirect products G=N:Q with N=C2×D42S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D42S3)⋊1C2 = D43D12φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):1C2192,340
(C2×D42S3)⋊2C2 = Dic6⋊D4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):2C2192,717
(C2×D42S3)⋊3C2 = D45D12φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):3C2192,1113
(C2×D42S3)⋊4C2 = D46D12φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):4C2192,1114
(C2×D42S3)⋊5C2 = C24.67D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):5C2192,1145
(C2×D42S3)⋊6C2 = C24.44D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):6C2192,1150
(C2×D42S3)⋊7C2 = C24.45D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):7C2192,1151
(C2×D42S3)⋊8C2 = C12⋊(C4○D4)φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):8C2192,1155
(C2×D42S3)⋊9C2 = C6.322+ 1+4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):9C2192,1156
(C2×D42S3)⋊10C2 = Dic619D4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):10C2192,1157
(C2×D42S3)⋊11C2 = Dic620D4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):11C2192,1158
(C2×D42S3)⋊12C2 = C4⋊C421D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):12C2192,1165
(C2×D42S3)⋊13C2 = C6.722- 1+4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):13C2192,1167
(C2×D42S3)⋊14C2 = C6.402+ 1+4φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):14C2192,1169
(C2×D42S3)⋊15C2 = C6.732- 1+4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):15C2192,1170
(C2×D42S3)⋊16C2 = C6.822- 1+4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):16C2192,1214
(C2×D42S3)⋊17C2 = C4⋊C428D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):17C2192,1215
(C2×D42S3)⋊18C2 = C42.233D6φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):18C2192,1227
(C2×D42S3)⋊19C2 = Dic610D4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):19C2192,1236
(C2×D42S3)⋊20C2 = C4228D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):20C2192,1274
(C2×D42S3)⋊21C2 = C42.238D6φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):21C2192,1275
(C2×D42S3)⋊22C2 = Dic611D4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):22C2192,1277
(C2×D42S3)⋊23C2 = C2×D8⋊S3φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):23C2192,1314
(C2×D42S3)⋊24C2 = C2×D83S3φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):24C2192,1315
(C2×D42S3)⋊25C2 = C2×Q8.7D6φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):25C2192,1320
(C2×D42S3)⋊26C2 = D84D6φ: C2/C1C2 ⊆ Out C2×D42S3488-(C2xD4:2S3):26C2192,1332
(C2×D42S3)⋊27C2 = C24.53D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):27C2192,1365
(C2×D42S3)⋊28C2 = C6.1042- 1+4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):28C2192,1383
(C2×D42S3)⋊29C2 = C2×D46D6φ: C2/C1C2 ⊆ Out C2×D42S348(C2xD4:2S3):29C2192,1516
(C2×D42S3)⋊30C2 = C2×Q8○D12φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3):30C2192,1522
(C2×D42S3)⋊31C2 = D6.C24φ: C2/C1C2 ⊆ Out C2×D42S3488-(C2xD4:2S3):31C2192,1525
(C2×D42S3)⋊32C2 = C2×S3×C4○D4φ: trivial image48(C2xD4:2S3):32C2192,1520

Non-split extensions G=N.Q with N=C2×D42S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D42S3).1C2 = C23⋊C45S3φ: C2/C1C2 ⊆ Out C2×D42S3488-(C2xD4:2S3).1C2192,299
(C2×D42S3).2C2 = M4(2).19D6φ: C2/C1C2 ⊆ Out C2×D42S3488-(C2xD4:2S3).2C2192,304
(C2×D42S3).3C2 = D4⋊(C4×S3)φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).3C2192,330
(C2×D42S3).4C2 = D42S3⋊C4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).4C2192,331
(C2×D42S3).5C2 = D4.D12φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).5C2192,342
(C2×D42S3).6C2 = Dic6.16D4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).6C2192,732
(C2×D42S3).7C2 = C42.108D6φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).7C2192,1105
(C2×D42S3).8C2 = C6.792- 1+4φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).8C2192,1207
(C2×D42S3).9C2 = C42.141D6φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).9C2192,1234
(C2×D42S3).10C2 = C2×D4.D6φ: C2/C1C2 ⊆ Out C2×D42S396(C2xD4:2S3).10C2192,1319
(C2×D42S3).11C2 = C4×D42S3φ: trivial image96(C2xD4:2S3).11C2192,1095

׿
×
𝔽