metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4:C4:21D6, (C2xD4):22D6, (C4xS3):12D4, D6:3(C4oD4), C23:2D6:8C2, C4:D4:26S3, C22:C4:26D6, D6.40(C2xD4), C4.182(S3xD4), D6:3D4:17C2, C4.D12:20C2, (D4xDic3):20C2, C12.226(C2xD4), (C6xD4):11C22, C6.65(C22xD4), Dic3:4D4:8C2, C23.9D6:18C2, (C2xC6).150C24, D6:C4.14C22, C4:Dic3:30C22, Dic3.63(C2xD4), (C22xC4).384D6, C12.48D4:33C2, C22:3(D4:2S3), (C2xC12).594C23, Dic3:C4:28C22, C3:4(C22.19C24), (C4xDic3):20C22, (C2xDic6):24C22, (C22xC6).19C23, C23.25(C22xS3), C6.D4:22C22, C22.171(S3xC23), (C2xDic3).71C23, (S3xC23).107C22, (C22xS3).185C23, (C22xC12).240C22, (C22xDic3):19C22, C2.38(C2xS3xD4), (S3xC22xC4):4C2, (C2xC6):5(C4oD4), (C3xC4:C4):9C22, C4:C4:7S3:19C2, C2.38(S3xC4oD4), (C3xC4:D4):12C2, C6.151(C2xC4oD4), (C2xD4:2S3):12C2, C2.36(C2xD4:2S3), (S3xC2xC4).247C22, (C3xC22:C4):11C22, (C2xC4).294(C22xS3), (C2xC3:D4).27C22, SmallGroup(192,1165)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4:C4:21D6
G = < a,b,c,d | a4=b4=c6=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b-1, dbd=a2b, dcd=c-1 >
Subgroups: 848 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, Dic6, C4xS3, C4xS3, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C22xC6, C42:C2, C4xD4, C22wrC2, C4:D4, C4:D4, C22:Q8, C22.D4, C23xC4, C2xC4oD4, C4xDic3, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, S3xC2xC4, D4:2S3, C22xDic3, C22xDic3, C2xC3:D4, C22xC12, C6xD4, C6xD4, S3xC23, C22.19C24, Dic3:4D4, C23.9D6, C4:C4:7S3, C4.D12, C12.48D4, D4xDic3, C23:2D6, D6:3D4, C3xC4:D4, S3xC22xC4, C2xD4:2S3, C4:C4:21D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C22xD4, C2xC4oD4, S3xD4, D4:2S3, S3xC23, C22.19C24, C2xS3xD4, C2xD4:2S3, S3xC4oD4, C4:C4:21D6
(1 28 7 34)(2 29 8 35)(3 30 9 36)(4 25 10 31)(5 26 11 32)(6 27 12 33)(13 40 16 37)(14 41 17 38)(15 42 18 39)(19 46 22 43)(20 47 23 44)(21 48 24 45)
(1 46 10 38)(2 39 11 47)(3 48 12 40)(4 41 7 43)(5 44 8 42)(6 37 9 45)(13 30 21 33)(14 34 22 25)(15 26 23 35)(16 36 24 27)(17 28 19 31)(18 32 20 29)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10)(13 17)(14 16)(19 21)(22 24)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 41)(38 40)(43 45)(46 48)
G:=sub<Sym(48)| (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,16,37)(14,41,17,38)(15,42,18,39)(19,46,22,43)(20,47,23,44)(21,48,24,45), (1,46,10,38)(2,39,11,47)(3,48,12,40)(4,41,7,43)(5,44,8,42)(6,37,9,45)(13,30,21,33)(14,34,22,25)(15,26,23,35)(16,36,24,27)(17,28,19,31)(18,32,20,29), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,17)(14,16)(19,21)(22,24)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48)>;
G:=Group( (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,16,37)(14,41,17,38)(15,42,18,39)(19,46,22,43)(20,47,23,44)(21,48,24,45), (1,46,10,38)(2,39,11,47)(3,48,12,40)(4,41,7,43)(5,44,8,42)(6,37,9,45)(13,30,21,33)(14,34,22,25)(15,26,23,35)(16,36,24,27)(17,28,19,31)(18,32,20,29), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,17)(14,16)(19,21)(22,24)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48) );
G=PermutationGroup([[(1,28,7,34),(2,29,8,35),(3,30,9,36),(4,25,10,31),(5,26,11,32),(6,27,12,33),(13,40,16,37),(14,41,17,38),(15,42,18,39),(19,46,22,43),(20,47,23,44),(21,48,24,45)], [(1,46,10,38),(2,39,11,47),(3,48,12,40),(4,41,7,43),(5,44,8,42),(6,37,9,45),(13,30,21,33),(14,34,22,25),(15,26,23,35),(16,36,24,27),(17,28,19,31),(18,32,20,29)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,12),(5,11),(6,10),(13,17),(14,16),(19,21),(22,24),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,41),(38,40),(43,45),(46,48)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | 12F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D6 | C4oD4 | C4oD4 | S3xD4 | D4:2S3 | S3xC4oD4 |
kernel | C4:C4:21D6 | Dic3:4D4 | C23.9D6 | C4:C4:7S3 | C4.D12 | C12.48D4 | D4xDic3 | C23:2D6 | D6:3D4 | C3xC4:D4 | S3xC22xC4 | C2xD4:2S3 | C4:D4 | C4xS3 | C22:C4 | C4:C4 | C22xC4 | C2xD4 | D6 | C2xC6 | C4 | C22 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 1 | 1 | 3 | 4 | 4 | 2 | 2 | 2 |
Matrix representation of C4:C4:21D6 ►in GL6(F13)
5 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 8 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 0 | 0 | 0 | 5 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,8,0],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1] >;
C4:C4:21D6 in GAP, Magma, Sage, TeX
C_4\rtimes C_4\rtimes_{21}D_6
% in TeX
G:=Group("C4:C4:21D6");
// GroupNames label
G:=SmallGroup(192,1165);
// by ID
G=gap.SmallGroup(192,1165);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,1123,794,297,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations