Copied to
clipboard

G = C4:C4:21D6order 192 = 26·3

4th semidirect product of C4:C4 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4:C4:21D6, (C2xD4):22D6, (C4xS3):12D4, D6:3(C4oD4), C23:2D6:8C2, C4:D4:26S3, C22:C4:26D6, D6.40(C2xD4), C4.182(S3xD4), D6:3D4:17C2, C4.D12:20C2, (D4xDic3):20C2, C12.226(C2xD4), (C6xD4):11C22, C6.65(C22xD4), Dic3:4D4:8C2, C23.9D6:18C2, (C2xC6).150C24, D6:C4.14C22, C4:Dic3:30C22, Dic3.63(C2xD4), (C22xC4).384D6, C12.48D4:33C2, C22:3(D4:2S3), (C2xC12).594C23, Dic3:C4:28C22, C3:4(C22.19C24), (C4xDic3):20C22, (C2xDic6):24C22, (C22xC6).19C23, C23.25(C22xS3), C6.D4:22C22, C22.171(S3xC23), (C2xDic3).71C23, (S3xC23).107C22, (C22xS3).185C23, (C22xC12).240C22, (C22xDic3):19C22, C2.38(C2xS3xD4), (S3xC22xC4):4C2, (C2xC6):5(C4oD4), (C3xC4:C4):9C22, C4:C4:7S3:19C2, C2.38(S3xC4oD4), (C3xC4:D4):12C2, C6.151(C2xC4oD4), (C2xD4:2S3):12C2, C2.36(C2xD4:2S3), (S3xC2xC4).247C22, (C3xC22:C4):11C22, (C2xC4).294(C22xS3), (C2xC3:D4).27C22, SmallGroup(192,1165)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C4:C4:21D6
C1C3C6C2xC6C22xS3S3xC23S3xC22xC4 — C4:C4:21D6
C3C2xC6 — C4:C4:21D6
C1C22C4:D4

Generators and relations for C4:C4:21D6
 G = < a,b,c,d | a4=b4=c6=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 848 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, Dic6, C4xS3, C4xS3, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C22xC6, C42:C2, C4xD4, C22wrC2, C4:D4, C4:D4, C22:Q8, C22.D4, C23xC4, C2xC4oD4, C4xDic3, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, S3xC2xC4, D4:2S3, C22xDic3, C22xDic3, C2xC3:D4, C22xC12, C6xD4, C6xD4, S3xC23, C22.19C24, Dic3:4D4, C23.9D6, C4:C4:7S3, C4.D12, C12.48D4, D4xDic3, C23:2D6, D6:3D4, C3xC4:D4, S3xC22xC4, C2xD4:2S3, C4:C4:21D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C22xD4, C2xC4oD4, S3xD4, D4:2S3, S3xC23, C22.19C24, C2xS3xD4, C2xD4:2S3, S3xC4oD4, C4:C4:21D6

Smallest permutation representation of C4:C4:21D6
On 48 points
Generators in S48
(1 28 7 34)(2 29 8 35)(3 30 9 36)(4 25 10 31)(5 26 11 32)(6 27 12 33)(13 40 16 37)(14 41 17 38)(15 42 18 39)(19 46 22 43)(20 47 23 44)(21 48 24 45)
(1 46 10 38)(2 39 11 47)(3 48 12 40)(4 41 7 43)(5 44 8 42)(6 37 9 45)(13 30 21 33)(14 34 22 25)(15 26 23 35)(16 36 24 27)(17 28 19 31)(18 32 20 29)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10)(13 17)(14 16)(19 21)(22 24)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 41)(38 40)(43 45)(46 48)

G:=sub<Sym(48)| (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,16,37)(14,41,17,38)(15,42,18,39)(19,46,22,43)(20,47,23,44)(21,48,24,45), (1,46,10,38)(2,39,11,47)(3,48,12,40)(4,41,7,43)(5,44,8,42)(6,37,9,45)(13,30,21,33)(14,34,22,25)(15,26,23,35)(16,36,24,27)(17,28,19,31)(18,32,20,29), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,17)(14,16)(19,21)(22,24)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48)>;

G:=Group( (1,28,7,34)(2,29,8,35)(3,30,9,36)(4,25,10,31)(5,26,11,32)(6,27,12,33)(13,40,16,37)(14,41,17,38)(15,42,18,39)(19,46,22,43)(20,47,23,44)(21,48,24,45), (1,46,10,38)(2,39,11,47)(3,48,12,40)(4,41,7,43)(5,44,8,42)(6,37,9,45)(13,30,21,33)(14,34,22,25)(15,26,23,35)(16,36,24,27)(17,28,19,31)(18,32,20,29), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,17)(14,16)(19,21)(22,24)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48) );

G=PermutationGroup([[(1,28,7,34),(2,29,8,35),(3,30,9,36),(4,25,10,31),(5,26,11,32),(6,27,12,33),(13,40,16,37),(14,41,17,38),(15,42,18,39),(19,46,22,43),(20,47,23,44),(21,48,24,45)], [(1,46,10,38),(2,39,11,47),(3,48,12,40),(4,41,7,43),(5,44,8,42),(6,37,9,45),(13,30,21,33),(14,34,22,25),(15,26,23,35),(16,36,24,27),(17,28,19,31),(18,32,20,29)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,12),(5,11),(6,10),(13,17),(14,16),(19,21),(22,24),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,41),(38,40),(43,45),(46,48)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P6A6B6C6D6E6F6G12A12B12C12D12E12F
order122222222222344444444444444446666666121212121212
size1111224466662222233334466121212122224488444488

42 irreducible representations

dim11111111111122222222444
type+++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4oD4C4oD4S3xD4D4:2S3S3xC4oD4
kernelC4:C4:21D6Dic3:4D4C23.9D6C4:C4:7S3C4.D12C12.48D4D4xDic3C23:2D6D6:3D4C3xC4:D4S3xC22xC4C2xD4:2S3C4:D4C4xS3C22:C4C4:C4C22xC4C2xD4D6C2xC6C4C22C2
# reps12211122111114211344222

Matrix representation of C4:C4:21D6 in GL6(F13)

500000
080000
001000
000100
000050
000008
,
080000
800000
001000
000100
000008
000050
,
100000
0120000
00121200
001000
0000120
0000012
,
100000
0120000
00121200
000100
0000120
000001

G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,8,0],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1] >;

C4:C4:21D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{21}D_6
% in TeX

G:=Group("C4:C4:21D6");
// GroupNames label

G:=SmallGroup(192,1165);
// by ID

G=gap.SmallGroup(192,1165);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,1123,794,297,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<