Extensions 1→N→G→Q→1 with N=D6 and Q=SD16

Direct product G=N×Q with N=D6 and Q=SD16
dρLabelID
C2×S3×SD1648C2xS3xSD16192,1317

Semidirect products G=N:Q with N=D6 and Q=SD16
extensionφ:Q→Out NdρLabelID
D61SD16 = D6⋊SD16φ: SD16/C8C2 ⊆ Out D696D6:1SD16192,337
D62SD16 = D62SD16φ: SD16/C8C2 ⊆ Out D696D6:2SD16192,366
D63SD16 = C88D12φ: SD16/C8C2 ⊆ Out D696D6:3SD16192,423
D64SD16 = C2414D4φ: SD16/C8C2 ⊆ Out D696D6:4SD16192,730
D65SD16 = D65SD16φ: SD16/D4C2 ⊆ Out D648D6:5SD16192,335
D66SD16 = D66SD16φ: SD16/D4C2 ⊆ Out D648D6:6SD16192,728
D67SD16 = Q83D12φ: SD16/Q8C2 ⊆ Out D696D6:7SD16192,365
D68SD16 = D68SD16φ: SD16/Q8C2 ⊆ Out D696D6:8SD16192,729

Non-split extensions G=N.Q with N=D6 and Q=SD16
extensionφ:Q→Out NdρLabelID
D6.1SD16 = D6.1SD16φ: SD16/D4C2 ⊆ Out D696D6.1SD16192,364
D6.2SD16 = D6.2SD16φ: SD16/D4C2 ⊆ Out D696D6.2SD16192,421
D6.3SD16 = D6.SD16φ: SD16/Q8C2 ⊆ Out D696D6.3SD16192,336
D6.4SD16 = D6.4SD16φ: SD16/Q8C2 ⊆ Out D696D6.4SD16192,422
D6.5SD16 = S3×D4⋊C4φ: trivial image48D6.5SD16192,328
D6.6SD16 = S3×Q8⋊C4φ: trivial image96D6.6SD16192,360
D6.7SD16 = S3×C4.Q8φ: trivial image96D6.7SD16192,418

׿
×
𝔽