Copied to
clipboard

G = D6.SD16order 192 = 26·3

1st non-split extension by D6 of SD16 acting via SD16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.3SD16, D6⋊C810C2, C4⋊C4.136D6, C8⋊Dic312C2, (C2×D4).25D6, (C2×C8).115D6, D4⋊C411S3, D63D4.2C2, D4⋊Dic38C2, C12.Q84C2, C6.24(C2×SD16), C2.12(S3×SD16), C4.52(C4○D12), C2.14(D8⋊S3), C6.32(C8⋊C22), (C2×Dic3).21D4, (C6×D4).38C22, (C22×S3).73D4, C22.175(S3×D4), C12.150(C4○D4), C4.79(D42S3), (C2×C24).126C22, (C2×C12).217C23, C32(C23.46D4), C4⋊Dic3.71C22, C2.13(C23.9D6), C6.21(C22.D4), (S3×C4⋊C4)⋊4C2, (C2×C6).230(C2×D4), (C2×C3⋊C8).16C22, (S3×C2×C4).10C22, (C3×D4⋊C4)⋊11C2, (C3×C4⋊C4).18C22, (C2×C4).324(C22×S3), SmallGroup(192,336)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D6.SD16
C1C3C6C2×C6C2×C12S3×C2×C4S3×C4⋊C4 — D6.SD16
C3C6C2×C12 — D6.SD16
C1C22C2×C4D4⋊C4

Generators and relations for D6.SD16
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=dbd=a3b, dcd=a3c3 >

Subgroups: 360 in 114 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×D4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22⋊C8, D4⋊C4, D4⋊C4, C4.Q8, C2×C4⋊C4, C4⋊D4, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C4⋊C4, C2×C24, S3×C2×C4, S3×C2×C4, C2×C3⋊D4, C6×D4, C23.46D4, C12.Q8, C8⋊Dic3, D6⋊C8, D4⋊Dic3, C3×D4⋊C4, S3×C4⋊C4, D63D4, D6.SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, C22×S3, C22.D4, C2×SD16, C8⋊C22, C4○D12, S3×D4, D42S3, C23.46D4, C23.9D6, D8⋊S3, S3×SD16, D6.SD16

Smallest permutation representation of D6.SD16
On 96 points
Generators in S96
(1 56 65 81 38 14)(2 49 66 82 39 15)(3 50 67 83 40 16)(4 51 68 84 33 9)(5 52 69 85 34 10)(6 53 70 86 35 11)(7 54 71 87 36 12)(8 55 72 88 37 13)(17 42 32 57 95 77)(18 43 25 58 96 78)(19 44 26 59 89 79)(20 45 27 60 90 80)(21 46 28 61 91 73)(22 47 29 62 92 74)(23 48 30 63 93 75)(24 41 31 64 94 76)
(1 76)(2 32)(3 78)(4 26)(5 80)(6 28)(7 74)(8 30)(9 59)(10 20)(11 61)(12 22)(13 63)(14 24)(15 57)(16 18)(17 66)(19 68)(21 70)(23 72)(25 83)(27 85)(29 87)(31 81)(33 89)(34 45)(35 91)(36 47)(37 93)(38 41)(39 95)(40 43)(42 49)(44 51)(46 53)(48 55)(50 96)(52 90)(54 92)(56 94)(58 67)(60 69)(62 71)(64 65)(73 86)(75 88)(77 82)(79 84)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 84)(3 7)(4 82)(6 88)(8 86)(9 66)(11 72)(12 16)(13 70)(15 68)(17 19)(18 62)(20 60)(21 23)(22 58)(24 64)(25 74)(26 32)(27 80)(28 30)(29 78)(31 76)(33 49)(35 55)(36 40)(37 53)(39 51)(41 94)(42 44)(43 92)(45 90)(46 48)(47 96)(50 54)(57 59)(61 63)(67 71)(73 75)(77 79)(83 87)(89 95)(91 93)

G:=sub<Sym(96)| (1,56,65,81,38,14)(2,49,66,82,39,15)(3,50,67,83,40,16)(4,51,68,84,33,9)(5,52,69,85,34,10)(6,53,70,86,35,11)(7,54,71,87,36,12)(8,55,72,88,37,13)(17,42,32,57,95,77)(18,43,25,58,96,78)(19,44,26,59,89,79)(20,45,27,60,90,80)(21,46,28,61,91,73)(22,47,29,62,92,74)(23,48,30,63,93,75)(24,41,31,64,94,76), (1,76)(2,32)(3,78)(4,26)(5,80)(6,28)(7,74)(8,30)(9,59)(10,20)(11,61)(12,22)(13,63)(14,24)(15,57)(16,18)(17,66)(19,68)(21,70)(23,72)(25,83)(27,85)(29,87)(31,81)(33,89)(34,45)(35,91)(36,47)(37,93)(38,41)(39,95)(40,43)(42,49)(44,51)(46,53)(48,55)(50,96)(52,90)(54,92)(56,94)(58,67)(60,69)(62,71)(64,65)(73,86)(75,88)(77,82)(79,84), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,84)(3,7)(4,82)(6,88)(8,86)(9,66)(11,72)(12,16)(13,70)(15,68)(17,19)(18,62)(20,60)(21,23)(22,58)(24,64)(25,74)(26,32)(27,80)(28,30)(29,78)(31,76)(33,49)(35,55)(36,40)(37,53)(39,51)(41,94)(42,44)(43,92)(45,90)(46,48)(47,96)(50,54)(57,59)(61,63)(67,71)(73,75)(77,79)(83,87)(89,95)(91,93)>;

G:=Group( (1,56,65,81,38,14)(2,49,66,82,39,15)(3,50,67,83,40,16)(4,51,68,84,33,9)(5,52,69,85,34,10)(6,53,70,86,35,11)(7,54,71,87,36,12)(8,55,72,88,37,13)(17,42,32,57,95,77)(18,43,25,58,96,78)(19,44,26,59,89,79)(20,45,27,60,90,80)(21,46,28,61,91,73)(22,47,29,62,92,74)(23,48,30,63,93,75)(24,41,31,64,94,76), (1,76)(2,32)(3,78)(4,26)(5,80)(6,28)(7,74)(8,30)(9,59)(10,20)(11,61)(12,22)(13,63)(14,24)(15,57)(16,18)(17,66)(19,68)(21,70)(23,72)(25,83)(27,85)(29,87)(31,81)(33,89)(34,45)(35,91)(36,47)(37,93)(38,41)(39,95)(40,43)(42,49)(44,51)(46,53)(48,55)(50,96)(52,90)(54,92)(56,94)(58,67)(60,69)(62,71)(64,65)(73,86)(75,88)(77,82)(79,84), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,84)(3,7)(4,82)(6,88)(8,86)(9,66)(11,72)(12,16)(13,70)(15,68)(17,19)(18,62)(20,60)(21,23)(22,58)(24,64)(25,74)(26,32)(27,80)(28,30)(29,78)(31,76)(33,49)(35,55)(36,40)(37,53)(39,51)(41,94)(42,44)(43,92)(45,90)(46,48)(47,96)(50,54)(57,59)(61,63)(67,71)(73,75)(77,79)(83,87)(89,95)(91,93) );

G=PermutationGroup([[(1,56,65,81,38,14),(2,49,66,82,39,15),(3,50,67,83,40,16),(4,51,68,84,33,9),(5,52,69,85,34,10),(6,53,70,86,35,11),(7,54,71,87,36,12),(8,55,72,88,37,13),(17,42,32,57,95,77),(18,43,25,58,96,78),(19,44,26,59,89,79),(20,45,27,60,90,80),(21,46,28,61,91,73),(22,47,29,62,92,74),(23,48,30,63,93,75),(24,41,31,64,94,76)], [(1,76),(2,32),(3,78),(4,26),(5,80),(6,28),(7,74),(8,30),(9,59),(10,20),(11,61),(12,22),(13,63),(14,24),(15,57),(16,18),(17,66),(19,68),(21,70),(23,72),(25,83),(27,85),(29,87),(31,81),(33,89),(34,45),(35,91),(36,47),(37,93),(38,41),(39,95),(40,43),(42,49),(44,51),(46,53),(48,55),(50,96),(52,90),(54,92),(56,94),(58,67),(60,69),(62,71),(64,65),(73,86),(75,88),(77,82),(79,84)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,84),(3,7),(4,82),(6,88),(8,86),(9,66),(11,72),(12,16),(13,70),(15,68),(17,19),(18,62),(20,60),(21,23),(22,58),(24,64),(25,74),(26,32),(27,80),(28,30),(29,78),(31,76),(33,49),(35,55),(36,40),(37,53),(39,51),(41,94),(42,44),(43,92),(45,90),(46,48),(47,96),(50,54),(57,59),(61,63),(67,71),(73,75),(77,79),(83,87),(89,95),(91,93)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222223444444446666688881212121224242424
size111166822244121212242228844121244884444

33 irreducible representations

dim1111111122222222244444
type+++++++++++++++-+
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6C4○D4SD16C4○D12C8⋊C22D42S3S3×D4D8⋊S3S3×SD16
kernelD6.SD16C12.Q8C8⋊Dic3D6⋊C8D4⋊Dic3C3×D4⋊C4S3×C4⋊C4D63D4D4⋊C4C2×Dic3C22×S3C4⋊C4C2×C8C2×D4C12D6C4C6C4C22C2C2
# reps1111111111111144411122

Matrix representation of D6.SD16 in GL4(𝔽73) generated by

1000
0100
0090
006965
,
1000
0100
002257
005351
,
611800
69000
00270
005646
,
1000
257200
0010
002172
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,9,69,0,0,0,65],[1,0,0,0,0,1,0,0,0,0,22,53,0,0,57,51],[61,69,0,0,18,0,0,0,0,0,27,56,0,0,0,46],[1,25,0,0,0,72,0,0,0,0,1,21,0,0,0,72] >;

D6.SD16 in GAP, Magma, Sage, TeX

D_6.{\rm SD}_{16}
% in TeX

G:=Group("D6.SD16");
// GroupNames label

G:=SmallGroup(192,336);
// by ID

G=gap.SmallGroup(192,336);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,926,219,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^3*b,d*c*d=a^3*c^3>;
// generators/relations

׿
×
𝔽