Copied to
clipboard

G = C88D12order 192 = 26·3

2nd semidirect product of C8 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C88D12, C2413D4, D63SD16, C4.Q88S3, C33(C88D4), C4⋊C4.38D6, C4.D126C2, C4.50(C2×D12), (C2×C8).260D6, C12⋊D4.5C2, C6.55(C4○D8), C6.D815C2, C12.130(C2×D4), C6.40(C2×SD16), C2.24(S3×SD16), C12.29(C4○D4), C6.SD1616C2, C6.43(C4⋊D4), C4.3(Q83S3), (C2×Dic3).99D4, (C22×S3).53D4, C22.216(S3×D4), C2.16(C12⋊D4), (C2×C12).280C23, (C2×C24).161C22, (C2×D12).74C22, C2.22(Q8.7D6), (C2×Dic6).83C22, (S3×C2×C8)⋊7C2, (C3×C4.Q8)⋊9C2, (C2×C24⋊C2)⋊28C2, (C2×C6).285(C2×D4), (C3×C4⋊C4).73C22, (C2×C3⋊C8).228C22, (S3×C2×C4).233C22, (C2×C4).383(C22×S3), SmallGroup(192,423)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C88D12
C1C3C6C2×C6C2×C12S3×C2×C4S3×C2×C8 — C88D12
C3C6C2×C12 — C88D12
C1C22C2×C4C4.Q8

Generators and relations for C88D12
 G = < a,b,c | a8=b12=c2=1, bab-1=cac=a3, cbc=b-1 >

Subgroups: 416 in 124 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, S3×C8, C24⋊C2, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, C2×D12, C88D4, C6.D8, C6.SD16, C3×C4.Q8, C12⋊D4, C4.D12, S3×C2×C8, C2×C24⋊C2, C88D12
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×SD16, C4○D8, C2×D12, S3×D4, Q83S3, C88D4, C12⋊D4, S3×SD16, Q8.7D6, C88D12

Smallest permutation representation of C88D12
On 96 points
Generators in S96
(1 17 68 33 77 94 50 39)(2 34 51 18 78 40 69 95)(3 19 70 35 79 96 52 41)(4 36 53 20 80 42 71 85)(5 21 72 25 81 86 54 43)(6 26 55 22 82 44 61 87)(7 23 62 27 83 88 56 45)(8 28 57 24 84 46 63 89)(9 13 64 29 73 90 58 47)(10 30 59 14 74 48 65 91)(11 15 66 31 75 92 60 37)(12 32 49 16 76 38 67 93)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 27)(14 26)(15 25)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)(37 86)(38 85)(39 96)(40 95)(41 94)(42 93)(43 92)(44 91)(45 90)(46 89)(47 88)(48 87)(49 71)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)(57 63)(58 62)(59 61)(60 72)(73 83)(74 82)(75 81)(76 80)(77 79)

G:=sub<Sym(96)| (1,17,68,33,77,94,50,39)(2,34,51,18,78,40,69,95)(3,19,70,35,79,96,52,41)(4,36,53,20,80,42,71,85)(5,21,72,25,81,86,54,43)(6,26,55,22,82,44,61,87)(7,23,62,27,83,88,56,45)(8,28,57,24,84,46,63,89)(9,13,64,29,73,90,58,47)(10,30,59,14,74,48,65,91)(11,15,66,31,75,92,60,37)(12,32,49,16,76,38,67,93), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(37,86)(38,85)(39,96)(40,95)(41,94)(42,93)(43,92)(44,91)(45,90)(46,89)(47,88)(48,87)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(60,72)(73,83)(74,82)(75,81)(76,80)(77,79)>;

G:=Group( (1,17,68,33,77,94,50,39)(2,34,51,18,78,40,69,95)(3,19,70,35,79,96,52,41)(4,36,53,20,80,42,71,85)(5,21,72,25,81,86,54,43)(6,26,55,22,82,44,61,87)(7,23,62,27,83,88,56,45)(8,28,57,24,84,46,63,89)(9,13,64,29,73,90,58,47)(10,30,59,14,74,48,65,91)(11,15,66,31,75,92,60,37)(12,32,49,16,76,38,67,93), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(37,86)(38,85)(39,96)(40,95)(41,94)(42,93)(43,92)(44,91)(45,90)(46,89)(47,88)(48,87)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(60,72)(73,83)(74,82)(75,81)(76,80)(77,79) );

G=PermutationGroup([[(1,17,68,33,77,94,50,39),(2,34,51,18,78,40,69,95),(3,19,70,35,79,96,52,41),(4,36,53,20,80,42,71,85),(5,21,72,25,81,86,54,43),(6,26,55,22,82,44,61,87),(7,23,62,27,83,88,56,45),(8,28,57,24,84,46,63,89),(9,13,64,29,73,90,58,47),(10,30,59,14,74,48,65,91),(11,15,66,31,75,92,60,37),(12,32,49,16,76,38,67,93)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,27),(14,26),(15,25),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28),(37,86),(38,85),(39,96),(40,95),(41,94),(42,93),(43,92),(44,91),(45,90),(46,89),(47,88),(48,87),(49,71),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64),(57,63),(58,62),(59,61),(60,72),(73,83),(74,82),(75,81),(76,80),(77,79)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222222344444446668888888812121212121224242424
size11116624222668824222222266664488884444

36 irreducible representations

dim1111111122222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D6D6C4○D4SD16D12C4○D8Q83S3S3×D4S3×SD16Q8.7D6
kernelC88D12C6.D8C6.SD16C3×C4.Q8C12⋊D4C4.D12S3×C2×C8C2×C24⋊C2C4.Q8C24C2×Dic3C22×S3C4⋊C4C2×C8C12D6C8C6C4C22C2C2
# reps1111111112112124441122

Matrix representation of C88D12 in GL4(𝔽73) generated by

66700
6600
00720
00072
,
72000
0100
00667
006659
,
1000
07200
0011
00072
G:=sub<GL(4,GF(73))| [6,6,0,0,67,6,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,1,0,0,0,0,66,66,0,0,7,59],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,1,72] >;

C88D12 in GAP, Magma, Sage, TeX

C_8\rtimes_8D_{12}
% in TeX

G:=Group("C8:8D12");
// GroupNames label

G:=SmallGroup(192,423);
// by ID

G=gap.SmallGroup(192,423);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,555,58,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=c^2=1,b*a*b^-1=c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽