Extensions 1→N→G→Q→1 with N=C3xQ8 and Q=C2xC4

Direct product G=NxQ with N=C3xQ8 and Q=C2xC4
dρLabelID
Q8xC2xC12192Q8xC2xC12192,1405

Semidirect products G=N:Q with N=C3xQ8 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C3xQ8):1(C2xC4) = Dic3:7SD16φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8):1(C2xC4)192,347
(C3xQ8):2(C2xC4) = S3xQ8:C4φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8):2(C2xC4)192,360
(C3xQ8):3(C2xC4) = Q8:7(C4xS3)φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8):3(C2xC4)192,362
(C3xQ8):4(C2xC4) = Q8:3(C4xS3)φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8):4(C2xC4)192,376
(C3xQ8):5(C2xC4) = S3xC4wrC2φ: C2xC4/C2C22 ⊆ Out C3xQ8244(C3xQ8):5(C2xC4)192,379
(C3xQ8):6(C2xC4) = Dic3xSD16φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8):6(C2xC4)192,720
(C3xQ8):7(C2xC4) = SD16:Dic3φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8):7(C2xC4)192,723
(C3xQ8):8(C2xC4) = C4xQ8:2S3φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8):8(C2xC4)192,584
(C3xQ8):9(C2xC4) = C42.56D6φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8):9(C2xC4)192,585
(C3xQ8):10(C2xC4) = C4xS3xQ8φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8):10(C2xC4)192,1130
(C3xQ8):11(C2xC4) = C4xQ8:3S3φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8):11(C2xC4)192,1132
(C3xQ8):12(C2xC4) = C42.126D6φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8):12(C2xC4)192,1133
(C3xQ8):13(C2xC4) = C12xSD16φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8):13(C2xC4)192,871
(C3xQ8):14(C2xC4) = C3xSD16:C4φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8):14(C2xC4)192,873
(C3xQ8):15(C2xC4) = C2xQ8:2Dic3φ: C2xC4/C22C2 ⊆ Out C3xQ8192(C3xQ8):15(C2xC4)192,783
(C3xQ8):16(C2xC4) = C4oD4:3Dic3φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8):16(C2xC4)192,791
(C3xQ8):17(C2xC4) = C2xQ8:3Dic3φ: C2xC4/C22C2 ⊆ Out C3xQ848(C3xQ8):17(C2xC4)192,794
(C3xQ8):18(C2xC4) = C2xQ8xDic3φ: C2xC4/C22C2 ⊆ Out C3xQ8192(C3xQ8):18(C2xC4)192,1370
(C3xQ8):19(C2xC4) = Dic3xC4oD4φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8):19(C2xC4)192,1385
(C3xQ8):20(C2xC4) = C6.1442+ 1+4φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8):20(C2xC4)192,1386
(C3xQ8):21(C2xC4) = C6xQ8:C4φ: C2xC4/C22C2 ⊆ Out C3xQ8192(C3xQ8):21(C2xC4)192,848
(C3xQ8):22(C2xC4) = C3xC23.36D4φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8):22(C2xC4)192,850
(C3xQ8):23(C2xC4) = C6xC4wrC2φ: C2xC4/C22C2 ⊆ Out C3xQ848(C3xQ8):23(C2xC4)192,853
(C3xQ8):24(C2xC4) = C12xC4oD4φ: trivial image96(C3xQ8):24(C2xC4)192,1406
(C3xQ8):25(C2xC4) = C3xC23.33C23φ: trivial image96(C3xQ8):25(C2xC4)192,1409

Non-split extensions G=N.Q with N=C3xQ8 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C3xQ8).1(C2xC4) = C3:Q16:C4φ: C2xC4/C2C22 ⊆ Out C3xQ8192(C3xQ8).1(C2xC4)192,348
(C3xQ8).2(C2xC4) = Dic3:4Q16φ: C2xC4/C2C22 ⊆ Out C3xQ8192(C3xQ8).2(C2xC4)192,349
(C3xQ8).3(C2xC4) = (S3xQ8):C4φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8).3(C2xC4)192,361
(C3xQ8).4(C2xC4) = C4:C4.150D6φ: C2xC4/C2C22 ⊆ Out C3xQ896(C3xQ8).4(C2xC4)192,363
(C3xQ8).5(C2xC4) = C42:3D6φ: C2xC4/C2C22 ⊆ Out C3xQ8484(C3xQ8).5(C2xC4)192,380
(C3xQ8).6(C2xC4) = M4(2).22D6φ: C2xC4/C2C22 ⊆ Out C3xQ8484(C3xQ8).6(C2xC4)192,382
(C3xQ8).7(C2xC4) = C42.196D6φ: C2xC4/C2C22 ⊆ Out C3xQ8484(C3xQ8).7(C2xC4)192,383
(C3xQ8).8(C2xC4) = Dic3xQ16φ: C2xC4/C2C22 ⊆ Out C3xQ8192(C3xQ8).8(C2xC4)192,740
(C3xQ8).9(C2xC4) = Q16:Dic3φ: C2xC4/C2C22 ⊆ Out C3xQ8192(C3xQ8).9(C2xC4)192,743
(C3xQ8).10(C2xC4) = D8:5Dic3φ: C2xC4/C2C22 ⊆ Out C3xQ8484(C3xQ8).10(C2xC4)192,755
(C3xQ8).11(C2xC4) = D8:4Dic3φ: C2xC4/C2C22 ⊆ Out C3xQ8484(C3xQ8).11(C2xC4)192,756
(C3xQ8).12(C2xC4) = C4xC3:Q16φ: C2xC4/C4C2 ⊆ Out C3xQ8192(C3xQ8).12(C2xC4)192,588
(C3xQ8).13(C2xC4) = C42.59D6φ: C2xC4/C4C2 ⊆ Out C3xQ8192(C3xQ8).13(C2xC4)192,589
(C3xQ8).14(C2xC4) = C24.100D4φ: C2xC4/C4C2 ⊆ Out C3xQ8484(C3xQ8).14(C2xC4)192,703
(C3xQ8).15(C2xC4) = C24.54D4φ: C2xC4/C4C2 ⊆ Out C3xQ8484(C3xQ8).15(C2xC4)192,704
(C3xQ8).16(C2xC4) = C42.125D6φ: C2xC4/C4C2 ⊆ Out C3xQ896(C3xQ8).16(C2xC4)192,1131
(C3xQ8).17(C2xC4) = S3xC8oD4φ: C2xC4/C4C2 ⊆ Out C3xQ8484(C3xQ8).17(C2xC4)192,1308
(C3xQ8).18(C2xC4) = M4(2):28D6φ: C2xC4/C4C2 ⊆ Out C3xQ8484(C3xQ8).18(C2xC4)192,1309
(C3xQ8).19(C2xC4) = C12xQ16φ: C2xC4/C4C2 ⊆ Out C3xQ8192(C3xQ8).19(C2xC4)192,872
(C3xQ8).20(C2xC4) = C3xQ16:C4φ: C2xC4/C4C2 ⊆ Out C3xQ8192(C3xQ8).20(C2xC4)192,874
(C3xQ8).21(C2xC4) = C3xC8oD8φ: C2xC4/C4C2 ⊆ Out C3xQ8482(C3xQ8).21(C2xC4)192,876
(C3xQ8).22(C2xC4) = C3xC8.26D4φ: C2xC4/C4C2 ⊆ Out C3xQ8484(C3xQ8).22(C2xC4)192,877
(C3xQ8).23(C2xC4) = (C6xQ8):6C4φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8).23(C2xC4)192,784
(C3xQ8).24(C2xC4) = C4oD4:4Dic3φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8).24(C2xC4)192,792
(C3xQ8).25(C2xC4) = (C6xD4):9C4φ: C2xC4/C22C2 ⊆ Out C3xQ8484(C3xQ8).25(C2xC4)192,795
(C3xQ8).26(C2xC4) = C6.422- 1+4φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8).26(C2xC4)192,1371
(C3xQ8).27(C2xC4) = C2xD4.Dic3φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8).27(C2xC4)192,1377
(C3xQ8).28(C2xC4) = C12.76C24φ: C2xC4/C22C2 ⊆ Out C3xQ8484(C3xQ8).28(C2xC4)192,1378
(C3xQ8).29(C2xC4) = C3xC23.24D4φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8).29(C2xC4)192,849
(C3xQ8).30(C2xC4) = C3xC23.38D4φ: C2xC4/C22C2 ⊆ Out C3xQ896(C3xQ8).30(C2xC4)192,852
(C3xQ8).31(C2xC4) = C3xC42:C22φ: C2xC4/C22C2 ⊆ Out C3xQ8484(C3xQ8).31(C2xC4)192,854
(C3xQ8).32(C2xC4) = C3xC23.32C23φ: trivial image96(C3xQ8).32(C2xC4)192,1408
(C3xQ8).33(C2xC4) = C6xC8oD4φ: trivial image96(C3xQ8).33(C2xC4)192,1456
(C3xQ8).34(C2xC4) = C3xQ8oM4(2)φ: trivial image484(C3xQ8).34(C2xC4)192,1457

׿
x
:
Z
F
o
wr
Q
<