extension | φ:Q→Out N | d | ρ | Label | ID |
(C3xQ8).1(C2xC4) = C3:Q16:C4 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 192 | | (C3xQ8).1(C2xC4) | 192,348 |
(C3xQ8).2(C2xC4) = Dic3:4Q16 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 192 | | (C3xQ8).2(C2xC4) | 192,349 |
(C3xQ8).3(C2xC4) = (S3xQ8):C4 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 96 | | (C3xQ8).3(C2xC4) | 192,361 |
(C3xQ8).4(C2xC4) = C4:C4.150D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 96 | | (C3xQ8).4(C2xC4) | 192,363 |
(C3xQ8).5(C2xC4) = C42:3D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).5(C2xC4) | 192,380 |
(C3xQ8).6(C2xC4) = M4(2).22D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).6(C2xC4) | 192,382 |
(C3xQ8).7(C2xC4) = C42.196D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).7(C2xC4) | 192,383 |
(C3xQ8).8(C2xC4) = Dic3xQ16 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 192 | | (C3xQ8).8(C2xC4) | 192,740 |
(C3xQ8).9(C2xC4) = Q16:Dic3 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 192 | | (C3xQ8).9(C2xC4) | 192,743 |
(C3xQ8).10(C2xC4) = D8:5Dic3 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).10(C2xC4) | 192,755 |
(C3xQ8).11(C2xC4) = D8:4Dic3 | φ: C2xC4/C2 → C22 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).11(C2xC4) | 192,756 |
(C3xQ8).12(C2xC4) = C4xC3:Q16 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 192 | | (C3xQ8).12(C2xC4) | 192,588 |
(C3xQ8).13(C2xC4) = C42.59D6 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 192 | | (C3xQ8).13(C2xC4) | 192,589 |
(C3xQ8).14(C2xC4) = C24.100D4 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).14(C2xC4) | 192,703 |
(C3xQ8).15(C2xC4) = C24.54D4 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).15(C2xC4) | 192,704 |
(C3xQ8).16(C2xC4) = C42.125D6 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 96 | | (C3xQ8).16(C2xC4) | 192,1131 |
(C3xQ8).17(C2xC4) = S3xC8oD4 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).17(C2xC4) | 192,1308 |
(C3xQ8).18(C2xC4) = M4(2):28D6 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).18(C2xC4) | 192,1309 |
(C3xQ8).19(C2xC4) = C12xQ16 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 192 | | (C3xQ8).19(C2xC4) | 192,872 |
(C3xQ8).20(C2xC4) = C3xQ16:C4 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 192 | | (C3xQ8).20(C2xC4) | 192,874 |
(C3xQ8).21(C2xC4) = C3xC8oD8 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 48 | 2 | (C3xQ8).21(C2xC4) | 192,876 |
(C3xQ8).22(C2xC4) = C3xC8.26D4 | φ: C2xC4/C4 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).22(C2xC4) | 192,877 |
(C3xQ8).23(C2xC4) = (C6xQ8):6C4 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 96 | | (C3xQ8).23(C2xC4) | 192,784 |
(C3xQ8).24(C2xC4) = C4oD4:4Dic3 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 96 | | (C3xQ8).24(C2xC4) | 192,792 |
(C3xQ8).25(C2xC4) = (C6xD4):9C4 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).25(C2xC4) | 192,795 |
(C3xQ8).26(C2xC4) = C6.422- 1+4 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 96 | | (C3xQ8).26(C2xC4) | 192,1371 |
(C3xQ8).27(C2xC4) = C2xD4.Dic3 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 96 | | (C3xQ8).27(C2xC4) | 192,1377 |
(C3xQ8).28(C2xC4) = C12.76C24 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).28(C2xC4) | 192,1378 |
(C3xQ8).29(C2xC4) = C3xC23.24D4 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 96 | | (C3xQ8).29(C2xC4) | 192,849 |
(C3xQ8).30(C2xC4) = C3xC23.38D4 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 96 | | (C3xQ8).30(C2xC4) | 192,852 |
(C3xQ8).31(C2xC4) = C3xC42:C22 | φ: C2xC4/C22 → C2 ⊆ Out C3xQ8 | 48 | 4 | (C3xQ8).31(C2xC4) | 192,854 |
(C3xQ8).32(C2xC4) = C3xC23.32C23 | φ: trivial image | 96 | | (C3xQ8).32(C2xC4) | 192,1408 |
(C3xQ8).33(C2xC4) = C6xC8oD4 | φ: trivial image | 96 | | (C3xQ8).33(C2xC4) | 192,1456 |
(C3xQ8).34(C2xC4) = C3xQ8oM4(2) | φ: trivial image | 48 | 4 | (C3xQ8).34(C2xC4) | 192,1457 |