Extensions 1→N→G→Q→1 with N=S3×D8 and Q=C2

Direct product G=N×Q with N=S3×D8 and Q=C2
dρLabelID
C2×S3×D848C2xS3xD8192,1313

Semidirect products G=N:Q with N=S3×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D8)⋊1C2 = S3×C8⋊C22φ: C2/C1C2 ⊆ Out S3×D8248+(S3xD8):1C2192,1331
(S3×D8)⋊2C2 = D85D6φ: C2/C1C2 ⊆ Out S3×D8488+(S3xD8):2C2192,1333
(S3×D8)⋊3C2 = S3×D16φ: C2/C1C2 ⊆ Out S3×D8484+(S3xD8):3C2192,469
(S3×D8)⋊4C2 = D8⋊D6φ: C2/C1C2 ⊆ Out S3×D8484(S3xD8):4C2192,470
(S3×D8)⋊5C2 = D48⋊C2φ: C2/C1C2 ⊆ Out S3×D8484+(S3xD8):5C2192,473
(S3×D8)⋊6C2 = D813D6φ: C2/C1C2 ⊆ Out S3×D8484(S3xD8):6C2192,1316
(S3×D8)⋊7C2 = D815D6φ: C2/C1C2 ⊆ Out S3×D8484+(S3xD8):7C2192,1328
(S3×D8)⋊8C2 = S3×C4○D8φ: trivial image484(S3xD8):8C2192,1326

Non-split extensions G=N.Q with N=S3×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D8).C2 = S3×SD32φ: C2/C1C2 ⊆ Out S3×D8484(S3xD8).C2192,472

׿
×
𝔽