Copied to
clipboard

G = D48:C2order 192 = 26·3

6th semidirect product of D48 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C16:3D6, D48:6C2, Q16:2D6, D8.3D6, D6.7D8, C48:3C22, SD32:1S3, D24:6C22, Dic3.9D8, C24.17C23, C3:C8.3D4, (S3xD8):5C2, C4.5(S3xD4), C3:D16:3C2, C3:C16:2C22, D6.C8:1C2, (C4xS3).8D4, C2.20(S3xD8), C6.36(C2xD8), C3:3(C16:C22), (C3xSD32):1C2, C12.11(C2xD4), C8.6D6:2C2, D24:C2:3C2, (S3xC8).4C22, C8.23(C22xS3), (C3xQ16):5C22, (C3xD8).3C22, SmallGroup(192,473)

Series: Derived Chief Lower central Upper central

C1C24 — D48:C2
C1C3C6C12C24S3xC8S3xD8 — D48:C2
C3C6C12C24 — D48:C2
C1C2C4C8SD32

Generators and relations for D48:C2
 G = < a,b,c | a48=b2=c2=1, bab=a-1, cac=a7, bc=cb >

Subgroups: 396 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2xC6, C16, C16, C2xC8, D8, D8, SD16, Q16, C2xD4, C4oD4, C3:C8, C24, C4xS3, C4xS3, D12, C3:D4, C3xD4, C3xQ8, C22xS3, M5(2), D16, SD32, SD32, C2xD8, C4oD8, C3:C16, C48, S3xC8, D24, D4:S3, Q8:2S3, C3xD8, C3xQ16, S3xD4, Q8:3S3, C16:C22, D6.C8, D48, C3:D16, C8.6D6, C3xSD32, S3xD8, D24:C2, D48:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C22xS3, C2xD8, S3xD4, C16:C22, S3xD8, D48:C2

Character table of D48:C2

 class 12A2B2C2D2E34A4B4C6A6B8A8B8C12A12B16A16B16C16D24A24B48A48B48C48D
 size 1168242422682162212416441212444444
ρ1111111111111111111111111111    trivial
ρ2111-1-1-1111-11-11111-11111111111    linear of order 2
ρ311-1-11-111-111-111-111-1-11111-1-1-1-1    linear of order 2
ρ411-11-1111-1-11111-11-1-1-11111-1-1-1-1    linear of order 2
ρ511111-1111-1111111-1-1-1-1-111-1-1-1-1    linear of order 2
ρ6111-1-1111111-111111-1-1-1-111-1-1-1-1    linear of order 2
ρ711-1-11111-1-11-111-11-111-1-1111111    linear of order 2
ρ811-11-1-111-111111-11111-1-1111111    linear of order 2
ρ9220200-120-2-1-1220-11-2-200-1-11111    orthogonal lifted from D6
ρ10220200-1202-1-1220-1-12200-1-1-1-1-1-1    orthogonal lifted from S3
ρ11222000222020-2-2-2200000-2-20000    orthogonal lifted from D4
ρ12220-200-1202-11220-1-1-2-200-1-11111    orthogonal lifted from D6
ρ13220-200-120-2-11220-112200-1-1-1-1-1-1    orthogonal lifted from D6
ρ1422-200022-2020-2-22200000-2-20000    orthogonal lifted from D4
ρ152220002-2-2020000-202-2-22002-2-22    orthogonal lifted from D8
ρ1622-20002-22020000-202-22-2002-2-22    orthogonal lifted from D8
ρ1722-20002-22020000-20-22-2200-222-2    orthogonal lifted from D8
ρ182220002-2-2020000-20-222-200-222-2    orthogonal lifted from D8
ρ19440000-2400-20-4-40-200000220000    orthogonal lifted from S3xD4
ρ204-400004000-4022-220000000-22220000    orthogonal lifted from C16:C22
ρ21440000-2-400-200002022-220000-222-2    orthogonal lifted from S3xD8
ρ224-400004000-40-2222000000022-220000    orthogonal lifted from C16:C22
ρ23440000-2-400-2000020-222200002-2-22    orthogonal lifted from S3xD8
ρ244-40000-200020-22220000000-22167ζ3167+2ζ16ζ316165ζ32165+2ζ163ζ321631613ζ321613+2ζ1611ζ321611167ζ32167+2ζ16ζ3216    orthogonal faithful
ρ254-40000-20002022-2200000002-2165ζ32165+2ζ163ζ32163167ζ32167+2ζ16ζ3216167ζ3167+2ζ16ζ3161613ζ321613+2ζ1611ζ321611    orthogonal faithful
ρ264-40000-200020-22220000000-22167ζ32167+2ζ16ζ32161613ζ321613+2ζ1611ζ321611165ζ32165+2ζ163ζ32163167ζ3167+2ζ16ζ316    orthogonal faithful
ρ274-40000-20002022-2200000002-21613ζ321613+2ζ1611ζ321611167ζ3167+2ζ16ζ316167ζ32167+2ζ16ζ3216165ζ32165+2ζ163ζ32163    orthogonal faithful

Smallest permutation representation of D48:C2
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)
(2 8)(3 15)(4 22)(5 29)(6 36)(7 43)(10 16)(11 23)(12 30)(13 37)(14 44)(18 24)(19 31)(20 38)(21 45)(26 32)(27 39)(28 46)(34 40)(35 47)(42 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42)], [(2,8),(3,15),(4,22),(5,29),(6,36),(7,43),(10,16),(11,23),(12,30),(13,37),(14,44),(18,24),(19,31),(20,38),(21,45),(26,32),(27,39),(28,46),(34,40),(35,47),(42,48)]])

Matrix representation of D48:C2 in GL4(F7) generated by

6415
6264
5656
1633
,
5245
1513
4416
0463
,
2440
4261
4366
2564
G:=sub<GL(4,GF(7))| [6,6,5,1,4,2,6,6,1,6,5,3,5,4,6,3],[5,1,4,0,2,5,4,4,4,1,1,6,5,3,6,3],[2,4,4,2,4,2,3,5,4,6,6,6,0,1,6,4] >;

D48:C2 in GAP, Magma, Sage, TeX

D_{48}\rtimes C_2
% in TeX

G:=Group("D48:C2");
// GroupNames label

G:=SmallGroup(192,473);
// by ID

G=gap.SmallGroup(192,473);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,135,184,346,185,192,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^48=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^7,b*c=c*b>;
// generators/relations

Export

Character table of D48:C2 in TeX

׿
x
:
Z
F
o
wr
Q
<