metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C16:3D6, D48:6C2, Q16:2D6, D8.3D6, D6.7D8, C48:3C22, SD32:1S3, D24:6C22, Dic3.9D8, C24.17C23, C3:C8.3D4, (S3xD8):5C2, C4.5(S3xD4), C3:D16:3C2, C3:C16:2C22, D6.C8:1C2, (C4xS3).8D4, C2.20(S3xD8), C6.36(C2xD8), C3:3(C16:C22), (C3xSD32):1C2, C12.11(C2xD4), C8.6D6:2C2, D24:C2:3C2, (S3xC8).4C22, C8.23(C22xS3), (C3xQ16):5C22, (C3xD8).3C22, SmallGroup(192,473)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D48:C2
G = < a,b,c | a48=b2=c2=1, bab=a-1, cac=a7, bc=cb >
Subgroups: 396 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2xC6, C16, C16, C2xC8, D8, D8, SD16, Q16, C2xD4, C4oD4, C3:C8, C24, C4xS3, C4xS3, D12, C3:D4, C3xD4, C3xQ8, C22xS3, M5(2), D16, SD32, SD32, C2xD8, C4oD8, C3:C16, C48, S3xC8, D24, D4:S3, Q8:2S3, C3xD8, C3xQ16, S3xD4, Q8:3S3, C16:C22, D6.C8, D48, C3:D16, C8.6D6, C3xSD32, S3xD8, D24:C2, D48:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C22xS3, C2xD8, S3xD4, C16:C22, S3xD8, D48:C2
Character table of D48:C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 8C | 12A | 12B | 16A | 16B | 16C | 16D | 24A | 24B | 48A | 48B | 48C | 48D | |
size | 1 | 1 | 6 | 8 | 24 | 24 | 2 | 2 | 6 | 8 | 2 | 16 | 2 | 2 | 12 | 4 | 16 | 4 | 4 | 12 | 12 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 2 | 0 | 0 | -1 | 2 | 0 | -2 | -1 | -1 | 2 | 2 | 0 | -1 | 1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 2 | 0 | 0 | -1 | 2 | 0 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | 2 | -1 | 1 | 2 | 2 | 0 | -1 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | -2 | -1 | 1 | 2 | 2 | 0 | -1 | 1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | √2 | -√2 | -√2 | √2 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -√2 | √2 | √2 | -√2 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | -2 | 0 | -4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | orthogonal lifted from C16:C22 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from S3xD8 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | orthogonal lifted from C16:C22 |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from S3xD8 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | orthogonal faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)
(2 8)(3 15)(4 22)(5 29)(6 36)(7 43)(10 16)(11 23)(12 30)(13 37)(14 44)(18 24)(19 31)(20 38)(21 45)(26 32)(27 39)(28 46)(34 40)(35 47)(42 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42)], [(2,8),(3,15),(4,22),(5,29),(6,36),(7,43),(10,16),(11,23),(12,30),(13,37),(14,44),(18,24),(19,31),(20,38),(21,45),(26,32),(27,39),(28,46),(34,40),(35,47),(42,48)]])
Matrix representation of D48:C2 ►in GL4(F7) generated by
6 | 4 | 1 | 5 |
6 | 2 | 6 | 4 |
5 | 6 | 5 | 6 |
1 | 6 | 3 | 3 |
5 | 2 | 4 | 5 |
1 | 5 | 1 | 3 |
4 | 4 | 1 | 6 |
0 | 4 | 6 | 3 |
2 | 4 | 4 | 0 |
4 | 2 | 6 | 1 |
4 | 3 | 6 | 6 |
2 | 5 | 6 | 4 |
G:=sub<GL(4,GF(7))| [6,6,5,1,4,2,6,6,1,6,5,3,5,4,6,3],[5,1,4,0,2,5,4,4,4,1,1,6,5,3,6,3],[2,4,4,2,4,2,3,5,4,6,6,6,0,1,6,4] >;
D48:C2 in GAP, Magma, Sage, TeX
D_{48}\rtimes C_2
% in TeX
G:=Group("D48:C2");
// GroupNames label
G:=SmallGroup(192,473);
// by ID
G=gap.SmallGroup(192,473);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,135,184,346,185,192,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^48=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^7,b*c=c*b>;
// generators/relations
Export