Extensions 1→N→G→Q→1 with N=M5(2) and Q=S3

Direct product G=N×Q with N=M5(2) and Q=S3
dρLabelID
S3×M5(2)484S3xM5(2)192,465

Semidirect products G=N:Q with N=M5(2) and Q=S3
extensionφ:Q→Out NdρLabelID
M5(2)⋊1S3 = C16⋊D6φ: S3/C3C2 ⊆ Out M5(2)484+M5(2):1S3192,467
M5(2)⋊2S3 = C16.D6φ: S3/C3C2 ⊆ Out M5(2)964-M5(2):2S3192,468
M5(2)⋊3S3 = C8.25D12φ: S3/C3C2 ⊆ Out M5(2)484M5(2):3S3192,73
M5(2)⋊4S3 = Dic6.C8φ: S3/C3C2 ⊆ Out M5(2)964M5(2):4S3192,74
M5(2)⋊5S3 = M5(2)⋊S3φ: S3/C3C2 ⊆ Out M5(2)484+M5(2):5S3192,75
M5(2)⋊6S3 = D242C4φ: S3/C3C2 ⊆ Out M5(2)484M5(2):6S3192,77
M5(2)⋊7S3 = C16.12D6φ: trivial image964M5(2):7S3192,466

Non-split extensions G=N.Q with N=M5(2) and Q=S3
extensionφ:Q→Out NdρLabelID
M5(2).1S3 = C24.Q8φ: S3/C3C2 ⊆ Out M5(2)484M5(2).1S3192,72
M5(2).2S3 = C24.97D4φ: S3/C3C2 ⊆ Out M5(2)484M5(2).2S3192,70
M5(2).3S3 = C48⋊C4φ: S3/C3C2 ⊆ Out M5(2)484M5(2).3S3192,71
M5(2).4S3 = C12.4D8φ: S3/C3C2 ⊆ Out M5(2)964-M5(2).4S3192,76

׿
×
𝔽