Copied to
clipboard

G = C12.4D8order 192 = 26·3

4th non-split extension by C12 of D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.4D8, C24.81D4, C4.12D24, Dic12.2C4, M5(2).4S3, C8.5(C4×S3), C24.2(C2×C4), (C2×C8).47D6, (C2×C4).10D12, (C2×C6).9SD16, C4.19(D6⋊C4), (C2×C12).100D4, C8.38(C3⋊D4), C32(C8.17D4), C24.C4.6C2, (C2×C24).51C22, (C2×Dic12).6C2, (C3×M5(2)).5C2, C6.18(D4⋊C4), C12.43(C22⋊C4), C22.7(C24⋊C2), C2.10(C2.D24), SmallGroup(192,76)

Series: Derived Chief Lower central Upper central

C1C24 — C12.4D8
C1C3C6C12C24C2×C24C2×Dic12 — C12.4D8
C3C6C12C24 — C12.4D8
C1C2C2×C4C2×C8M5(2)

Generators and relations for C12.4D8
 G = < a,b,c | a12=1, b8=a6, c2=a9, bab-1=a7, cac-1=a5, cbc-1=a9b7 >

2C2
12C4
12C4
2C6
6Q8
6Q8
12C2×C4
12Q8
12C8
4Dic3
4Dic3
2C16
3Q16
3Q16
6M4(2)
6Q16
6C2×Q8
2Dic6
2Dic6
4C3⋊C8
4C2×Dic3
4Dic6
3C8.C4
3C2×Q16
2C48
2Dic12
2C4.Dic3
2C2×Dic6
3C8.17D4

Smallest permutation representation of C12.4D8
On 96 points
Generators in S96
(1 43 78 5 47 66 9 35 70 13 39 74)(2 36 79 14 48 75 10 44 71 6 40 67)(3 45 80 7 33 68 11 37 72 15 41 76)(4 38 65 16 34 77 12 46 73 8 42 69)(17 58 83 29 54 95 25 50 91 21 62 87)(18 51 84 22 55 88 26 59 92 30 63 96)(19 60 85 31 56 81 27 52 93 23 64 89)(20 53 86 24 57 90 28 61 94 32 49 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 60 13 64 9 52 5 56)(2 63 6 59 10 55 14 51)(3 58 15 62 11 50 7 54)(4 61 8 57 12 53 16 49)(17 33 21 45 25 41 29 37)(18 44 30 48 26 36 22 40)(19 47 23 43 27 39 31 35)(20 42 32 46 28 34 24 38)(65 90 69 86 73 82 77 94)(66 85 78 89 74 93 70 81)(67 88 71 84 75 96 79 92)(68 83 80 87 76 91 72 95)

G:=sub<Sym(96)| (1,43,78,5,47,66,9,35,70,13,39,74)(2,36,79,14,48,75,10,44,71,6,40,67)(3,45,80,7,33,68,11,37,72,15,41,76)(4,38,65,16,34,77,12,46,73,8,42,69)(17,58,83,29,54,95,25,50,91,21,62,87)(18,51,84,22,55,88,26,59,92,30,63,96)(19,60,85,31,56,81,27,52,93,23,64,89)(20,53,86,24,57,90,28,61,94,32,49,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,60,13,64,9,52,5,56)(2,63,6,59,10,55,14,51)(3,58,15,62,11,50,7,54)(4,61,8,57,12,53,16,49)(17,33,21,45,25,41,29,37)(18,44,30,48,26,36,22,40)(19,47,23,43,27,39,31,35)(20,42,32,46,28,34,24,38)(65,90,69,86,73,82,77,94)(66,85,78,89,74,93,70,81)(67,88,71,84,75,96,79,92)(68,83,80,87,76,91,72,95)>;

G:=Group( (1,43,78,5,47,66,9,35,70,13,39,74)(2,36,79,14,48,75,10,44,71,6,40,67)(3,45,80,7,33,68,11,37,72,15,41,76)(4,38,65,16,34,77,12,46,73,8,42,69)(17,58,83,29,54,95,25,50,91,21,62,87)(18,51,84,22,55,88,26,59,92,30,63,96)(19,60,85,31,56,81,27,52,93,23,64,89)(20,53,86,24,57,90,28,61,94,32,49,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,60,13,64,9,52,5,56)(2,63,6,59,10,55,14,51)(3,58,15,62,11,50,7,54)(4,61,8,57,12,53,16,49)(17,33,21,45,25,41,29,37)(18,44,30,48,26,36,22,40)(19,47,23,43,27,39,31,35)(20,42,32,46,28,34,24,38)(65,90,69,86,73,82,77,94)(66,85,78,89,74,93,70,81)(67,88,71,84,75,96,79,92)(68,83,80,87,76,91,72,95) );

G=PermutationGroup([[(1,43,78,5,47,66,9,35,70,13,39,74),(2,36,79,14,48,75,10,44,71,6,40,67),(3,45,80,7,33,68,11,37,72,15,41,76),(4,38,65,16,34,77,12,46,73,8,42,69),(17,58,83,29,54,95,25,50,91,21,62,87),(18,51,84,22,55,88,26,59,92,30,63,96),(19,60,85,31,56,81,27,52,93,23,64,89),(20,53,86,24,57,90,28,61,94,32,49,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,60,13,64,9,52,5,56),(2,63,6,59,10,55,14,51),(3,58,15,62,11,50,7,54),(4,61,8,57,12,53,16,49),(17,33,21,45,25,41,29,37),(18,44,30,48,26,36,22,40),(19,47,23,43,27,39,31,35),(20,42,32,46,28,34,24,38),(65,90,69,86,73,82,77,94),(66,85,78,89,74,93,70,81),(67,88,71,84,75,96,79,92),(68,83,80,87,76,91,72,95)]])

36 conjugacy classes

class 1 2A2B 3 4A4B4C4D6A6B8A8B8C8D8E12A12B12C16A16B16C16D24A24B24C24D24E24F48A···48H
order1223444466888881212121616161624242424242448···48
size112222242424224242422444442222444···4

36 irreducible representations

dim111112222222222244
type+++++++++++--
imageC1C2C2C2C4S3D4D4D6D8SD16C4×S3C3⋊D4D12D24C24⋊C2C8.17D4C12.4D8
kernelC12.4D8C24.C4C3×M5(2)C2×Dic12Dic12M5(2)C24C2×C12C2×C8C12C2×C6C8C8C2×C4C4C22C3C1
# reps111141111222224424

Matrix representation of C12.4D8 in GL4(𝔽97) generated by

396800
296800
005829
006829
,
0010
0001
957900
181600
,
005254
00245
72500
302500
G:=sub<GL(4,GF(97))| [39,29,0,0,68,68,0,0,0,0,58,68,0,0,29,29],[0,0,95,18,0,0,79,16,1,0,0,0,0,1,0,0],[0,0,72,30,0,0,5,25,52,2,0,0,54,45,0,0] >;

C12.4D8 in GAP, Magma, Sage, TeX

C_{12}._4D_8
% in TeX

G:=Group("C12.4D8");
// GroupNames label

G:=SmallGroup(192,76);
// by ID

G=gap.SmallGroup(192,76);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,85,92,422,387,268,570,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^8=a^6,c^2=a^9,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=a^9*b^7>;
// generators/relations

Export

Subgroup lattice of C12.4D8 in TeX

׿
×
𝔽