Copied to
clipboard

G = C16⋊D6order 192 = 26·3

1st semidirect product of C16 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C161D6, D482C2, C8.3D12, C24.2D4, C481C22, C4.14D24, C12.14D8, D248C22, M5(2)⋊1S3, C22.5D24, C24.59C23, Dic127C22, (C2×C6).6D8, C4○D249C2, C48⋊C21C2, C6.13(C2×D8), (C2×C8).73D6, (C2×D24)⋊11C2, C31(C16⋊C22), (C2×C4).41D12, C2.15(C2×D24), C4.40(C2×D12), (C2×C12).128D4, C12.283(C2×D4), (C3×M5(2))⋊1C2, C8.49(C22×S3), (C2×C24).59C22, SmallGroup(192,467)

Series: Derived Chief Lower central Upper central

C1C24 — C16⋊D6
C1C3C6C12C24D24C2×D24 — C16⋊D6
C3C6C12C24 — C16⋊D6
C1C2C2×C4C2×C8M5(2)

Generators and relations for C16⋊D6
 G = < a,b,c | a16=b6=c2=1, bab-1=a9, cac=a7, cbc=b-1 >

Subgroups: 424 in 90 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C16, C2×C8, D8, SD16, Q16, C2×D4, C4○D4, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C22×S3, M5(2), D16, SD32, C2×D8, C4○D8, C48, C24⋊C2, D24, D24, D24, Dic12, C2×C24, C2×D12, C4○D12, C16⋊C22, D48, C48⋊C2, C3×M5(2), C2×D24, C4○D24, C16⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, D12, C22×S3, C2×D8, D24, C2×D12, C16⋊C22, C2×D24, C16⋊D6

Smallest permutation representation of C16⋊D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 46 27)(2 39 28 10 47 20)(3 48 29)(4 41 30 12 33 22)(5 34 31)(6 43 32 14 35 24)(7 36 17)(8 45 18 16 37 26)(9 38 19)(11 40 21)(13 42 23)(15 44 25)
(1 27)(2 18)(3 25)(4 32)(5 23)(6 30)(7 21)(8 28)(9 19)(10 26)(11 17)(12 24)(13 31)(14 22)(15 29)(16 20)(33 35)(34 42)(36 40)(37 47)(39 45)(41 43)(44 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,46,27)(2,39,28,10,47,20)(3,48,29)(4,41,30,12,33,22)(5,34,31)(6,43,32,14,35,24)(7,36,17)(8,45,18,16,37,26)(9,38,19)(11,40,21)(13,42,23)(15,44,25), (1,27)(2,18)(3,25)(4,32)(5,23)(6,30)(7,21)(8,28)(9,19)(10,26)(11,17)(12,24)(13,31)(14,22)(15,29)(16,20)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,46,27)(2,39,28,10,47,20)(3,48,29)(4,41,30,12,33,22)(5,34,31)(6,43,32,14,35,24)(7,36,17)(8,45,18,16,37,26)(9,38,19)(11,40,21)(13,42,23)(15,44,25), (1,27)(2,18)(3,25)(4,32)(5,23)(6,30)(7,21)(8,28)(9,19)(10,26)(11,17)(12,24)(13,31)(14,22)(15,29)(16,20)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,46,27),(2,39,28,10,47,20),(3,48,29),(4,41,30,12,33,22),(5,34,31),(6,43,32,14,35,24),(7,36,17),(8,45,18,16,37,26),(9,38,19),(11,40,21),(13,42,23),(15,44,25)], [(1,27),(2,18),(3,25),(4,32),(5,23),(6,30),(7,21),(8,28),(9,19),(10,26),(11,17),(12,24),(13,31),(14,22),(15,29),(16,20),(33,35),(34,42),(36,40),(37,47),(39,45),(41,43),(44,48)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C6A6B8A8B8C12A12B12C16A16B16C16D24A24B24C24D24E24F48A···48H
order1222223444668881212121616161624242424242448···48
size112242424222242422422444442222444···4

36 irreducible representations

dim1111112222222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D8D8D12D12D24D24C16⋊C22C16⋊D6
kernelC16⋊D6D48C48⋊C2C3×M5(2)C2×D24C4○D24M5(2)C24C2×C12C16C2×C8C12C2×C6C8C2×C4C4C22C3C1
# reps1221111112122224424

Matrix representation of C16⋊D6 in GL6(𝔽97)

2790000
18810000
000010
000001
00909000
0079000
,
010000
9610000
001000
000100
0000960
0000096
,
9610000
010000
001000
0009600
0000790
00009090

G:=sub<GL(6,GF(97))| [2,18,0,0,0,0,79,81,0,0,0,0,0,0,0,0,90,7,0,0,0,0,90,90,0,0,1,0,0,0,0,0,0,1,0,0],[0,96,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,0,0,0,0,0,0,96],[96,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,0,0,0,0,0,0,7,90,0,0,0,0,90,90] >;

C16⋊D6 in GAP, Magma, Sage, TeX

C_{16}\rtimes D_6
% in TeX

G:=Group("C16:D6");
// GroupNames label

G:=SmallGroup(192,467);
// by ID

G=gap.SmallGroup(192,467);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,387,142,675,192,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^16=b^6=c^2=1,b*a*b^-1=a^9,c*a*c=a^7,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽