extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4⋊1D4) = (C2×C12)⋊5D4 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.1(C4:1D4) | 192,230 |
C6.2(C4⋊1D4) = (C2×C12).33D4 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.2(C4:1D4) | 192,236 |
C6.3(C4⋊1D4) = C8⋊5D12 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.3(C4:1D4) | 192,252 |
C6.4(C4⋊1D4) = C12⋊4D8 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.4(C4:1D4) | 192,254 |
C6.5(C4⋊1D4) = C8.8D12 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.5(C4:1D4) | 192,255 |
C6.6(C4⋊1D4) = C12⋊4Q16 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 192 | | C6.6(C4:1D4) | 192,258 |
C6.7(C4⋊1D4) = C8⋊D12 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.7(C4:1D4) | 192,271 |
C6.8(C4⋊1D4) = C8.D12 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.8(C4:1D4) | 192,274 |
C6.9(C4⋊1D4) = C42⋊10Dic3 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 192 | | C6.9(C4:1D4) | 192,494 |
C6.10(C4⋊1D4) = (C2×C4)⋊6D12 | φ: C4⋊1D4/C42 → C2 ⊆ Aut C6 | 96 | | C6.10(C4:1D4) | 192,498 |
C6.11(C4⋊1D4) = C24.18D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.11(C4:1D4) | 192,508 |
C6.12(C4⋊1D4) = C24.24D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.12(C4:1D4) | 192,516 |
C6.13(C4⋊1D4) = C23⋊3D12 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.13(C4:1D4) | 192,519 |
C6.14(C4⋊1D4) = (C4×Dic3)⋊8C4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.14(C4:1D4) | 192,534 |
C6.15(C4⋊1D4) = (C2×D12)⋊10C4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.15(C4:1D4) | 192,547 |
C6.16(C4⋊1D4) = (C2×C12).290D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.16(C4:1D4) | 192,552 |
C6.17(C4⋊1D4) = C42.64D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.17(C4:1D4) | 192,617 |
C6.18(C4⋊1D4) = C42.214D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.18(C4:1D4) | 192,618 |
C6.19(C4⋊1D4) = C42.65D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.19(C4:1D4) | 192,619 |
C6.20(C4⋊1D4) = C12⋊D8 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.20(C4:1D4) | 192,632 |
C6.21(C4⋊1D4) = C42.74D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.21(C4:1D4) | 192,633 |
C6.22(C4⋊1D4) = C12⋊4SD16 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.22(C4:1D4) | 192,635 |
C6.23(C4⋊1D4) = C12⋊6SD16 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.23(C4:1D4) | 192,644 |
C6.24(C4⋊1D4) = C42.80D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.24(C4:1D4) | 192,645 |
C6.25(C4⋊1D4) = C12⋊3Q16 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.25(C4:1D4) | 192,651 |
C6.26(C4⋊1D4) = C24⋊5D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.26(C4:1D4) | 192,710 |
C6.27(C4⋊1D4) = C24⋊11D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.27(C4:1D4) | 192,713 |
C6.28(C4⋊1D4) = C24.22D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.28(C4:1D4) | 192,714 |
C6.29(C4⋊1D4) = C24.31D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.29(C4:1D4) | 192,726 |
C6.30(C4⋊1D4) = C24.43D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.30(C4:1D4) | 192,727 |
C6.31(C4⋊1D4) = C24⋊15D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.31(C4:1D4) | 192,734 |
C6.32(C4⋊1D4) = C24⋊9D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.32(C4:1D4) | 192,735 |
C6.33(C4⋊1D4) = C24.26D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.33(C4:1D4) | 192,742 |
C6.34(C4⋊1D4) = C24.37D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.34(C4:1D4) | 192,749 |
C6.35(C4⋊1D4) = C24.28D4 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.35(C4:1D4) | 192,750 |
C6.36(C4⋊1D4) = C24.30D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.36(C4:1D4) | 192,780 |
C6.37(C4⋊1D4) = C24.32D6 | φ: C4⋊1D4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.37(C4:1D4) | 192,782 |
C6.38(C4⋊1D4) = C3×C42⋊9C4 | central extension (φ=1) | 192 | | C6.38(C4:1D4) | 192,817 |
C6.39(C4⋊1D4) = C3×C24.3C22 | central extension (φ=1) | 96 | | C6.39(C4:1D4) | 192,823 |
C6.40(C4⋊1D4) = C3×C23⋊2D4 | central extension (φ=1) | 96 | | C6.40(C4:1D4) | 192,825 |
C6.41(C4⋊1D4) = C3×C23.4Q8 | central extension (φ=1) | 96 | | C6.41(C4:1D4) | 192,832 |
C6.42(C4⋊1D4) = C3×C8⋊5D4 | central extension (φ=1) | 96 | | C6.42(C4:1D4) | 192,925 |
C6.43(C4⋊1D4) = C3×C8⋊4D4 | central extension (φ=1) | 96 | | C6.43(C4:1D4) | 192,926 |
C6.44(C4⋊1D4) = C3×C4⋊Q16 | central extension (φ=1) | 192 | | C6.44(C4:1D4) | 192,927 |
C6.45(C4⋊1D4) = C3×C8.12D4 | central extension (φ=1) | 96 | | C6.45(C4:1D4) | 192,928 |
C6.46(C4⋊1D4) = C3×C8⋊3D4 | central extension (φ=1) | 96 | | C6.46(C4:1D4) | 192,929 |
C6.47(C4⋊1D4) = C3×C8.2D4 | central extension (φ=1) | 96 | | C6.47(C4:1D4) | 192,930 |