Copied to
clipboard

G = C12⋊D8order 192 = 26·3

3rd semidirect product of C12 and D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C123D8, C42.218D6, C3⋊C811D4, C41(D4⋊S3), C41D43S3, C32(C84D4), C4.14(S3×D4), C6.58(C2×D8), (C2×D4).56D6, C12.31(C2×D4), C4⋊D1210C2, (C2×C12).148D4, C6.20(C41D4), (C6×D4).72C22, C2.11(C123D4), (C2×C12).391C23, (C4×C12).121C22, (C2×D12).105C22, (C4×C3⋊C8)⋊15C2, (C2×D4⋊S3)⋊14C2, (C3×C41D4)⋊2C2, C2.13(C2×D4⋊S3), (C2×C6).522(C2×D4), (C2×C3⋊C8).257C22, (C2×C4).131(C3⋊D4), (C2×C4).489(C22×S3), C22.195(C2×C3⋊D4), SmallGroup(192,632)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C12⋊D8
C1C3C6C12C2×C12C2×D12C4⋊D12 — C12⋊D8
C3C6C2×C12 — C12⋊D8
C1C22C42C41D4

Generators and relations for C12⋊D8
 G = < a,b,c | a12=b8=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 592 in 162 conjugacy classes, 51 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, C2×C4, D4, C23, C12, D6, C2×C6, C2×C6, C42, C2×C8, D8, C2×D4, C2×D4, C3⋊C8, D12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C4×C8, C41D4, C41D4, C2×D8, C2×C3⋊C8, D4⋊S3, C4×C12, C2×D12, C2×D12, C6×D4, C6×D4, C84D4, C4×C3⋊C8, C4⋊D12, C2×D4⋊S3, C3×C41D4, C12⋊D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C3⋊D4, C22×S3, C41D4, C2×D8, D4⋊S3, S3×D4, C2×C3⋊D4, C84D4, C2×D4⋊S3, C123D4, C12⋊D8

Smallest permutation representation of C12⋊D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 77 95 58 47 28 23 70)(2 82 96 51 48 33 24 63)(3 75 85 56 37 26 13 68)(4 80 86 49 38 31 14 61)(5 73 87 54 39 36 15 66)(6 78 88 59 40 29 16 71)(7 83 89 52 41 34 17 64)(8 76 90 57 42 27 18 69)(9 81 91 50 43 32 19 62)(10 74 92 55 44 25 20 67)(11 79 93 60 45 30 21 72)(12 84 94 53 46 35 22 65)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 93)(14 92)(15 91)(16 90)(17 89)(18 88)(19 87)(20 86)(21 85)(22 96)(23 95)(24 94)(25 49)(26 60)(27 59)(28 58)(29 57)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 50)(37 45)(38 44)(39 43)(40 42)(46 48)(61 74)(62 73)(63 84)(64 83)(65 82)(66 81)(67 80)(68 79)(69 78)(70 77)(71 76)(72 75)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,77,95,58,47,28,23,70)(2,82,96,51,48,33,24,63)(3,75,85,56,37,26,13,68)(4,80,86,49,38,31,14,61)(5,73,87,54,39,36,15,66)(6,78,88,59,40,29,16,71)(7,83,89,52,41,34,17,64)(8,76,90,57,42,27,18,69)(9,81,91,50,43,32,19,62)(10,74,92,55,44,25,20,67)(11,79,93,60,45,30,21,72)(12,84,94,53,46,35,22,65), (2,12)(3,11)(4,10)(5,9)(6,8)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,96)(23,95)(24,94)(25,49)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,45)(38,44)(39,43)(40,42)(46,48)(61,74)(62,73)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,77,95,58,47,28,23,70)(2,82,96,51,48,33,24,63)(3,75,85,56,37,26,13,68)(4,80,86,49,38,31,14,61)(5,73,87,54,39,36,15,66)(6,78,88,59,40,29,16,71)(7,83,89,52,41,34,17,64)(8,76,90,57,42,27,18,69)(9,81,91,50,43,32,19,62)(10,74,92,55,44,25,20,67)(11,79,93,60,45,30,21,72)(12,84,94,53,46,35,22,65), (2,12)(3,11)(4,10)(5,9)(6,8)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,96)(23,95)(24,94)(25,49)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,45)(38,44)(39,43)(40,42)(46,48)(61,74)(62,73)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,77,95,58,47,28,23,70),(2,82,96,51,48,33,24,63),(3,75,85,56,37,26,13,68),(4,80,86,49,38,31,14,61),(5,73,87,54,39,36,15,66),(6,78,88,59,40,29,16,71),(7,83,89,52,41,34,17,64),(8,76,90,57,42,27,18,69),(9,81,91,50,43,32,19,62),(10,74,92,55,44,25,20,67),(11,79,93,60,45,30,21,72),(12,84,94,53,46,35,22,65)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,93),(14,92),(15,91),(16,90),(17,89),(18,88),(19,87),(20,86),(21,85),(22,96),(23,95),(24,94),(25,49),(26,60),(27,59),(28,58),(29,57),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,50),(37,45),(38,44),(39,43),(40,42),(46,48),(61,74),(62,73),(63,84),(64,83),(65,82),(66,81),(67,80),(68,79),(69,78),(70,77),(71,76),(72,75)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A···4F6A6B6C6D6E6F6G8A···8H12A···12F
order1222222234···466666668···812···12
size111188242422···222288886···64···4

36 irreducible representations

dim11111222222244
type+++++++++++++
imageC1C2C2C2C2S3D4D4D6D6D8C3⋊D4D4⋊S3S3×D4
kernelC12⋊D8C4×C3⋊C8C4⋊D12C2×D4⋊S3C3×C41D4C41D4C3⋊C8C2×C12C42C2×D4C12C2×C4C4C4
# reps11141142128442

Matrix representation of C12⋊D8 in GL6(𝔽73)

0720000
110000
000100
0072000
000010
000001
,
30600000
30430000
00165700
00161600
00005716
00005757
,
100000
72720000
001000
0007200
000010
0000072

G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,1,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[30,30,0,0,0,0,60,43,0,0,0,0,0,0,16,16,0,0,0,0,57,16,0,0,0,0,0,0,57,57,0,0,0,0,16,57],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C12⋊D8 in GAP, Magma, Sage, TeX

C_{12}\rtimes D_8
% in TeX

G:=Group("C12:D8");
// GroupNames label

G:=SmallGroup(192,632);
// by ID

G=gap.SmallGroup(192,632);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,219,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽